Step |
Hyp |
Ref |
Expression |
1 |
|
mirval.p |
|- P = ( Base ` G ) |
2 |
|
mirval.d |
|- .- = ( dist ` G ) |
3 |
|
mirval.i |
|- I = ( Itv ` G ) |
4 |
|
mirval.l |
|- L = ( LineG ` G ) |
5 |
|
mirval.s |
|- S = ( pInvG ` G ) |
6 |
|
mirval.g |
|- ( ph -> G e. TarskiG ) |
7 |
|
krippen.m |
|- M = ( S ` X ) |
8 |
|
krippen.n |
|- N = ( S ` Y ) |
9 |
|
krippen.a |
|- ( ph -> A e. P ) |
10 |
|
krippen.b |
|- ( ph -> B e. P ) |
11 |
|
krippen.c |
|- ( ph -> C e. P ) |
12 |
|
krippen.e |
|- ( ph -> E e. P ) |
13 |
|
krippen.f |
|- ( ph -> F e. P ) |
14 |
|
krippen.x |
|- ( ph -> X e. P ) |
15 |
|
krippen.y |
|- ( ph -> Y e. P ) |
16 |
|
krippen.1 |
|- ( ph -> C e. ( A I E ) ) |
17 |
|
krippen.2 |
|- ( ph -> C e. ( B I F ) ) |
18 |
|
krippen.3 |
|- ( ph -> ( C .- A ) = ( C .- B ) ) |
19 |
|
krippen.4 |
|- ( ph -> ( C .- E ) = ( C .- F ) ) |
20 |
|
krippen.5 |
|- ( ph -> B = ( M ` A ) ) |
21 |
|
krippen.6 |
|- ( ph -> F = ( N ` E ) ) |
22 |
6
|
adantr |
|- ( ( ph /\ ( C .- A ) ( leG ` G ) ( C .- E ) ) -> G e. TarskiG ) |
23 |
9
|
adantr |
|- ( ( ph /\ ( C .- A ) ( leG ` G ) ( C .- E ) ) -> A e. P ) |
24 |
10
|
adantr |
|- ( ( ph /\ ( C .- A ) ( leG ` G ) ( C .- E ) ) -> B e. P ) |
25 |
11
|
adantr |
|- ( ( ph /\ ( C .- A ) ( leG ` G ) ( C .- E ) ) -> C e. P ) |
26 |
12
|
adantr |
|- ( ( ph /\ ( C .- A ) ( leG ` G ) ( C .- E ) ) -> E e. P ) |
27 |
13
|
adantr |
|- ( ( ph /\ ( C .- A ) ( leG ` G ) ( C .- E ) ) -> F e. P ) |
28 |
14
|
adantr |
|- ( ( ph /\ ( C .- A ) ( leG ` G ) ( C .- E ) ) -> X e. P ) |
29 |
15
|
adantr |
|- ( ( ph /\ ( C .- A ) ( leG ` G ) ( C .- E ) ) -> Y e. P ) |
30 |
16
|
adantr |
|- ( ( ph /\ ( C .- A ) ( leG ` G ) ( C .- E ) ) -> C e. ( A I E ) ) |
31 |
17
|
adantr |
|- ( ( ph /\ ( C .- A ) ( leG ` G ) ( C .- E ) ) -> C e. ( B I F ) ) |
32 |
18
|
adantr |
|- ( ( ph /\ ( C .- A ) ( leG ` G ) ( C .- E ) ) -> ( C .- A ) = ( C .- B ) ) |
33 |
19
|
adantr |
|- ( ( ph /\ ( C .- A ) ( leG ` G ) ( C .- E ) ) -> ( C .- E ) = ( C .- F ) ) |
34 |
20
|
adantr |
|- ( ( ph /\ ( C .- A ) ( leG ` G ) ( C .- E ) ) -> B = ( M ` A ) ) |
35 |
21
|
adantr |
|- ( ( ph /\ ( C .- A ) ( leG ` G ) ( C .- E ) ) -> F = ( N ` E ) ) |
36 |
|
eqid |
|- ( leG ` G ) = ( leG ` G ) |
37 |
|
simpr |
|- ( ( ph /\ ( C .- A ) ( leG ` G ) ( C .- E ) ) -> ( C .- A ) ( leG ` G ) ( C .- E ) ) |
38 |
1 2 3 4 5 22 7 8 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
|
krippenlem |
|- ( ( ph /\ ( C .- A ) ( leG ` G ) ( C .- E ) ) -> C e. ( X I Y ) ) |
39 |
6
|
adantr |
|- ( ( ph /\ ( C .- E ) ( leG ` G ) ( C .- A ) ) -> G e. TarskiG ) |
40 |
15
|
adantr |
|- ( ( ph /\ ( C .- E ) ( leG ` G ) ( C .- A ) ) -> Y e. P ) |
41 |
11
|
adantr |
|- ( ( ph /\ ( C .- E ) ( leG ` G ) ( C .- A ) ) -> C e. P ) |
42 |
14
|
adantr |
|- ( ( ph /\ ( C .- E ) ( leG ` G ) ( C .- A ) ) -> X e. P ) |
43 |
12
|
adantr |
|- ( ( ph /\ ( C .- E ) ( leG ` G ) ( C .- A ) ) -> E e. P ) |
44 |
13
|
adantr |
|- ( ( ph /\ ( C .- E ) ( leG ` G ) ( C .- A ) ) -> F e. P ) |
45 |
9
|
adantr |
|- ( ( ph /\ ( C .- E ) ( leG ` G ) ( C .- A ) ) -> A e. P ) |
46 |
10
|
adantr |
|- ( ( ph /\ ( C .- E ) ( leG ` G ) ( C .- A ) ) -> B e. P ) |
47 |
16
|
adantr |
|- ( ( ph /\ ( C .- E ) ( leG ` G ) ( C .- A ) ) -> C e. ( A I E ) ) |
48 |
1 2 3 39 45 41 43 47
|
tgbtwncom |
|- ( ( ph /\ ( C .- E ) ( leG ` G ) ( C .- A ) ) -> C e. ( E I A ) ) |
49 |
17
|
adantr |
|- ( ( ph /\ ( C .- E ) ( leG ` G ) ( C .- A ) ) -> C e. ( B I F ) ) |
50 |
1 2 3 39 46 41 44 49
|
tgbtwncom |
|- ( ( ph /\ ( C .- E ) ( leG ` G ) ( C .- A ) ) -> C e. ( F I B ) ) |
51 |
19
|
adantr |
|- ( ( ph /\ ( C .- E ) ( leG ` G ) ( C .- A ) ) -> ( C .- E ) = ( C .- F ) ) |
52 |
18
|
adantr |
|- ( ( ph /\ ( C .- E ) ( leG ` G ) ( C .- A ) ) -> ( C .- A ) = ( C .- B ) ) |
53 |
21
|
adantr |
|- ( ( ph /\ ( C .- E ) ( leG ` G ) ( C .- A ) ) -> F = ( N ` E ) ) |
54 |
20
|
adantr |
|- ( ( ph /\ ( C .- E ) ( leG ` G ) ( C .- A ) ) -> B = ( M ` A ) ) |
55 |
|
simpr |
|- ( ( ph /\ ( C .- E ) ( leG ` G ) ( C .- A ) ) -> ( C .- E ) ( leG ` G ) ( C .- A ) ) |
56 |
1 2 3 4 5 39 8 7 43 44 41 45 46 40 42 48 50 51 52 53 54 36 55
|
krippenlem |
|- ( ( ph /\ ( C .- E ) ( leG ` G ) ( C .- A ) ) -> C e. ( Y I X ) ) |
57 |
1 2 3 39 40 41 42 56
|
tgbtwncom |
|- ( ( ph /\ ( C .- E ) ( leG ` G ) ( C .- A ) ) -> C e. ( X I Y ) ) |
58 |
1 2 3 36 6 11 9 11 12
|
legtrid |
|- ( ph -> ( ( C .- A ) ( leG ` G ) ( C .- E ) \/ ( C .- E ) ( leG ` G ) ( C .- A ) ) ) |
59 |
38 57 58
|
mpjaodan |
|- ( ph -> C e. ( X I Y ) ) |