| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mirval.p |
|- P = ( Base ` G ) |
| 2 |
|
mirval.d |
|- .- = ( dist ` G ) |
| 3 |
|
mirval.i |
|- I = ( Itv ` G ) |
| 4 |
|
mirval.l |
|- L = ( LineG ` G ) |
| 5 |
|
mirval.s |
|- S = ( pInvG ` G ) |
| 6 |
|
mirval.g |
|- ( ph -> G e. TarskiG ) |
| 7 |
|
krippen.m |
|- M = ( S ` X ) |
| 8 |
|
krippen.n |
|- N = ( S ` Y ) |
| 9 |
|
krippen.a |
|- ( ph -> A e. P ) |
| 10 |
|
krippen.b |
|- ( ph -> B e. P ) |
| 11 |
|
krippen.c |
|- ( ph -> C e. P ) |
| 12 |
|
krippen.e |
|- ( ph -> E e. P ) |
| 13 |
|
krippen.f |
|- ( ph -> F e. P ) |
| 14 |
|
krippen.x |
|- ( ph -> X e. P ) |
| 15 |
|
krippen.y |
|- ( ph -> Y e. P ) |
| 16 |
|
krippen.1 |
|- ( ph -> C e. ( A I E ) ) |
| 17 |
|
krippen.2 |
|- ( ph -> C e. ( B I F ) ) |
| 18 |
|
krippen.3 |
|- ( ph -> ( C .- A ) = ( C .- B ) ) |
| 19 |
|
krippen.4 |
|- ( ph -> ( C .- E ) = ( C .- F ) ) |
| 20 |
|
krippen.5 |
|- ( ph -> B = ( M ` A ) ) |
| 21 |
|
krippen.6 |
|- ( ph -> F = ( N ` E ) ) |
| 22 |
|
krippen.l |
|- .<_ = ( leG ` G ) |
| 23 |
|
krippen.7 |
|- ( ph -> ( C .- A ) .<_ ( C .- E ) ) |
| 24 |
16
|
adantr |
|- ( ( ph /\ E = C ) -> C e. ( A I E ) ) |
| 25 |
6
|
adantr |
|- ( ( ph /\ E = C ) -> G e. TarskiG ) |
| 26 |
11
|
adantr |
|- ( ( ph /\ E = C ) -> C e. P ) |
| 27 |
9
|
adantr |
|- ( ( ph /\ E = C ) -> A e. P ) |
| 28 |
10
|
adantr |
|- ( ( ph /\ E = C ) -> B e. P ) |
| 29 |
18
|
adantr |
|- ( ( ph /\ E = C ) -> ( C .- A ) = ( C .- B ) ) |
| 30 |
23
|
adantr |
|- ( ( ph /\ E = C ) -> ( C .- A ) .<_ ( C .- E ) ) |
| 31 |
|
simpr |
|- ( ( ph /\ E = C ) -> E = C ) |
| 32 |
31
|
oveq2d |
|- ( ( ph /\ E = C ) -> ( C .- E ) = ( C .- C ) ) |
| 33 |
30 32
|
breqtrd |
|- ( ( ph /\ E = C ) -> ( C .- A ) .<_ ( C .- C ) ) |
| 34 |
1 2 3 22 25 26 27 26 28 33
|
legeq |
|- ( ( ph /\ E = C ) -> C = A ) |
| 35 |
1 2 3 25 26 27 26 28 29 34
|
tgcgreq |
|- ( ( ph /\ E = C ) -> C = B ) |
| 36 |
20
|
adantr |
|- ( ( ph /\ E = C ) -> B = ( M ` A ) ) |
| 37 |
35 34 36
|
3eqtr3rd |
|- ( ( ph /\ E = C ) -> ( M ` A ) = A ) |
| 38 |
14
|
adantr |
|- ( ( ph /\ E = C ) -> X e. P ) |
| 39 |
1 2 3 4 5 25 38 7 27
|
mirinv |
|- ( ( ph /\ E = C ) -> ( ( M ` A ) = A <-> X = A ) ) |
| 40 |
37 39
|
mpbid |
|- ( ( ph /\ E = C ) -> X = A ) |
| 41 |
13
|
adantr |
|- ( ( ph /\ E = C ) -> F e. P ) |
| 42 |
19
|
adantr |
|- ( ( ph /\ E = C ) -> ( C .- E ) = ( C .- F ) ) |
| 43 |
42 32
|
eqtr3d |
|- ( ( ph /\ E = C ) -> ( C .- F ) = ( C .- C ) ) |
| 44 |
1 2 3 25 26 41 26 43
|
axtgcgrid |
|- ( ( ph /\ E = C ) -> C = F ) |
| 45 |
21
|
adantr |
|- ( ( ph /\ E = C ) -> F = ( N ` E ) ) |
| 46 |
31 44 45
|
3eqtrrd |
|- ( ( ph /\ E = C ) -> ( N ` E ) = E ) |
| 47 |
15
|
adantr |
|- ( ( ph /\ E = C ) -> Y e. P ) |
| 48 |
12
|
adantr |
|- ( ( ph /\ E = C ) -> E e. P ) |
| 49 |
1 2 3 4 5 25 47 8 48
|
mirinv |
|- ( ( ph /\ E = C ) -> ( ( N ` E ) = E <-> Y = E ) ) |
| 50 |
46 49
|
mpbid |
|- ( ( ph /\ E = C ) -> Y = E ) |
| 51 |
40 50
|
oveq12d |
|- ( ( ph /\ E = C ) -> ( X I Y ) = ( A I E ) ) |
| 52 |
24 51
|
eleqtrrd |
|- ( ( ph /\ E = C ) -> C e. ( X I Y ) ) |
| 53 |
6
|
adantr |
|- ( ( ph /\ E =/= C ) -> G e. TarskiG ) |
| 54 |
53
|
ad2antrr |
|- ( ( ( ( ph /\ E =/= C ) /\ q e. P ) /\ ( q e. ( ( ( S ` C ) ` Y ) I C ) /\ q e. ( A I B ) ) ) -> G e. TarskiG ) |
| 55 |
11
|
adantr |
|- ( ( ph /\ E =/= C ) -> C e. P ) |
| 56 |
|
eqid |
|- ( S ` C ) = ( S ` C ) |
| 57 |
1 2 3 4 5 53 55 56
|
mirf |
|- ( ( ph /\ E =/= C ) -> ( S ` C ) : P --> P ) |
| 58 |
15
|
adantr |
|- ( ( ph /\ E =/= C ) -> Y e. P ) |
| 59 |
57 58
|
ffvelcdmd |
|- ( ( ph /\ E =/= C ) -> ( ( S ` C ) ` Y ) e. P ) |
| 60 |
59
|
ad2antrr |
|- ( ( ( ( ph /\ E =/= C ) /\ q e. P ) /\ ( q e. ( ( ( S ` C ) ` Y ) I C ) /\ q e. ( A I B ) ) ) -> ( ( S ` C ) ` Y ) e. P ) |
| 61 |
|
simplr |
|- ( ( ( ( ph /\ E =/= C ) /\ q e. P ) /\ ( q e. ( ( ( S ` C ) ` Y ) I C ) /\ q e. ( A I B ) ) ) -> q e. P ) |
| 62 |
55
|
ad2antrr |
|- ( ( ( ( ph /\ E =/= C ) /\ q e. P ) /\ ( q e. ( ( ( S ` C ) ` Y ) I C ) /\ q e. ( A I B ) ) ) -> C e. P ) |
| 63 |
58
|
ad2antrr |
|- ( ( ( ( ph /\ E =/= C ) /\ q e. P ) /\ ( q e. ( ( ( S ` C ) ` Y ) I C ) /\ q e. ( A I B ) ) ) -> Y e. P ) |
| 64 |
|
simprl |
|- ( ( ( ( ph /\ E =/= C ) /\ q e. P ) /\ ( q e. ( ( ( S ` C ) ` Y ) I C ) /\ q e. ( A I B ) ) ) -> q e. ( ( ( S ` C ) ` Y ) I C ) ) |
| 65 |
1 2 3 4 5 6 11 56 15
|
mirbtwn |
|- ( ph -> C e. ( ( ( S ` C ) ` Y ) I Y ) ) |
| 66 |
65
|
ad3antrrr |
|- ( ( ( ( ph /\ E =/= C ) /\ q e. P ) /\ ( q e. ( ( ( S ` C ) ` Y ) I C ) /\ q e. ( A I B ) ) ) -> C e. ( ( ( S ` C ) ` Y ) I Y ) ) |
| 67 |
1 2 3 54 60 61 62 63 64 66
|
tgbtwnexch3 |
|- ( ( ( ( ph /\ E =/= C ) /\ q e. P ) /\ ( q e. ( ( ( S ` C ) ` Y ) I C ) /\ q e. ( A I B ) ) ) -> C e. ( q I Y ) ) |
| 68 |
14
|
ad3antrrr |
|- ( ( ( ( ph /\ E =/= C ) /\ q e. P ) /\ ( q e. ( ( ( S ` C ) ` Y ) I C ) /\ q e. ( A I B ) ) ) -> X e. P ) |
| 69 |
9
|
adantr |
|- ( ( ph /\ E =/= C ) -> A e. P ) |
| 70 |
69
|
ad2antrr |
|- ( ( ( ( ph /\ E =/= C ) /\ q e. P ) /\ ( q e. ( ( ( S ` C ) ` Y ) I C ) /\ q e. ( A I B ) ) ) -> A e. P ) |
| 71 |
10
|
adantr |
|- ( ( ph /\ E =/= C ) -> B e. P ) |
| 72 |
71
|
ad2antrr |
|- ( ( ( ( ph /\ E =/= C ) /\ q e. P ) /\ ( q e. ( ( ( S ` C ) ` Y ) I C ) /\ q e. ( A I B ) ) ) -> B e. P ) |
| 73 |
|
eqid |
|- ( S ` q ) = ( S ` q ) |
| 74 |
12
|
adantr |
|- ( ( ph /\ E =/= C ) -> E e. P ) |
| 75 |
57 74
|
ffvelcdmd |
|- ( ( ph /\ E =/= C ) -> ( ( S ` C ) ` E ) e. P ) |
| 76 |
13
|
adantr |
|- ( ( ph /\ E =/= C ) -> F e. P ) |
| 77 |
57 76
|
ffvelcdmd |
|- ( ( ph /\ E =/= C ) -> ( ( S ` C ) ` F ) e. P ) |
| 78 |
6
|
ad2antrr |
|- ( ( ( ph /\ E =/= C ) /\ A = C ) -> G e. TarskiG ) |
| 79 |
9
|
ad2antrr |
|- ( ( ( ph /\ E =/= C ) /\ A = C ) -> A e. P ) |
| 80 |
75
|
adantr |
|- ( ( ( ph /\ E =/= C ) /\ A = C ) -> ( ( S ` C ) ` E ) e. P ) |
| 81 |
1 2 3 78 79 80
|
tgbtwntriv1 |
|- ( ( ( ph /\ E =/= C ) /\ A = C ) -> A e. ( A I ( ( S ` C ) ` E ) ) ) |
| 82 |
|
simpr |
|- ( ( ( ph /\ E =/= C ) /\ A = C ) -> A = C ) |
| 83 |
82
|
oveq1d |
|- ( ( ( ph /\ E =/= C ) /\ A = C ) -> ( A I ( ( S ` C ) ` E ) ) = ( C I ( ( S ` C ) ` E ) ) ) |
| 84 |
81 83
|
eleqtrd |
|- ( ( ( ph /\ E =/= C ) /\ A = C ) -> A e. ( C I ( ( S ` C ) ` E ) ) ) |
| 85 |
6
|
ad2antrr |
|- ( ( ( ph /\ E =/= C ) /\ A =/= C ) -> G e. TarskiG ) |
| 86 |
9
|
ad2antrr |
|- ( ( ( ph /\ E =/= C ) /\ A =/= C ) -> A e. P ) |
| 87 |
75
|
adantr |
|- ( ( ( ph /\ E =/= C ) /\ A =/= C ) -> ( ( S ` C ) ` E ) e. P ) |
| 88 |
11
|
ad2antrr |
|- ( ( ( ph /\ E =/= C ) /\ A =/= C ) -> C e. P ) |
| 89 |
12
|
ad2antrr |
|- ( ( ( ph /\ E =/= C ) /\ A =/= C ) -> E e. P ) |
| 90 |
|
simplr |
|- ( ( ( ph /\ E =/= C ) /\ A =/= C ) -> E =/= C ) |
| 91 |
1 2 3 6 9 11 12 16
|
tgbtwncom |
|- ( ph -> C e. ( E I A ) ) |
| 92 |
91
|
ad2antrr |
|- ( ( ( ph /\ E =/= C ) /\ A =/= C ) -> C e. ( E I A ) ) |
| 93 |
1 2 3 4 5 85 88 56 89
|
mirbtwn |
|- ( ( ( ph /\ E =/= C ) /\ A =/= C ) -> C e. ( ( ( S ` C ) ` E ) I E ) ) |
| 94 |
1 2 3 85 87 88 89 93
|
tgbtwncom |
|- ( ( ( ph /\ E =/= C ) /\ A =/= C ) -> C e. ( E I ( ( S ` C ) ` E ) ) ) |
| 95 |
1 3 85 89 88 86 87 90 92 94
|
tgbtwnconn2 |
|- ( ( ( ph /\ E =/= C ) /\ A =/= C ) -> ( A e. ( C I ( ( S ` C ) ` E ) ) \/ ( ( S ` C ) ` E ) e. ( C I A ) ) ) |
| 96 |
23
|
adantr |
|- ( ( ph /\ E =/= C ) -> ( C .- A ) .<_ ( C .- E ) ) |
| 97 |
1 2 3 4 5 53 55 56 74
|
mircgr |
|- ( ( ph /\ E =/= C ) -> ( C .- ( ( S ` C ) ` E ) ) = ( C .- E ) ) |
| 98 |
96 97
|
breqtrrd |
|- ( ( ph /\ E =/= C ) -> ( C .- A ) .<_ ( C .- ( ( S ` C ) ` E ) ) ) |
| 99 |
98
|
adantr |
|- ( ( ( ph /\ E =/= C ) /\ A =/= C ) -> ( C .- A ) .<_ ( C .- ( ( S ` C ) ` E ) ) ) |
| 100 |
1 2 3 22 85 86 87 88 86 95 99
|
legbtwn |
|- ( ( ( ph /\ E =/= C ) /\ A =/= C ) -> A e. ( C I ( ( S ` C ) ` E ) ) ) |
| 101 |
84 100
|
pm2.61dane |
|- ( ( ph /\ E =/= C ) -> A e. ( C I ( ( S ` C ) ` E ) ) ) |
| 102 |
1 2 3 53 55 69 75 101
|
tgbtwncom |
|- ( ( ph /\ E =/= C ) -> A e. ( ( ( S ` C ) ` E ) I C ) ) |
| 103 |
6
|
ad2antrr |
|- ( ( ( ph /\ E =/= C ) /\ B = C ) -> G e. TarskiG ) |
| 104 |
10
|
ad2antrr |
|- ( ( ( ph /\ E =/= C ) /\ B = C ) -> B e. P ) |
| 105 |
77
|
adantr |
|- ( ( ( ph /\ E =/= C ) /\ B = C ) -> ( ( S ` C ) ` F ) e. P ) |
| 106 |
1 2 3 103 104 105
|
tgbtwntriv1 |
|- ( ( ( ph /\ E =/= C ) /\ B = C ) -> B e. ( B I ( ( S ` C ) ` F ) ) ) |
| 107 |
|
simpr |
|- ( ( ( ph /\ E =/= C ) /\ B = C ) -> B = C ) |
| 108 |
107
|
oveq1d |
|- ( ( ( ph /\ E =/= C ) /\ B = C ) -> ( B I ( ( S ` C ) ` F ) ) = ( C I ( ( S ` C ) ` F ) ) ) |
| 109 |
106 108
|
eleqtrd |
|- ( ( ( ph /\ E =/= C ) /\ B = C ) -> B e. ( C I ( ( S ` C ) ` F ) ) ) |
| 110 |
6
|
ad2antrr |
|- ( ( ( ph /\ E =/= C ) /\ B =/= C ) -> G e. TarskiG ) |
| 111 |
10
|
ad2antrr |
|- ( ( ( ph /\ E =/= C ) /\ B =/= C ) -> B e. P ) |
| 112 |
77
|
adantr |
|- ( ( ( ph /\ E =/= C ) /\ B =/= C ) -> ( ( S ` C ) ` F ) e. P ) |
| 113 |
11
|
ad2antrr |
|- ( ( ( ph /\ E =/= C ) /\ B =/= C ) -> C e. P ) |
| 114 |
13
|
ad2antrr |
|- ( ( ( ph /\ E =/= C ) /\ B =/= C ) -> F e. P ) |
| 115 |
6
|
adantr |
|- ( ( ph /\ F = C ) -> G e. TarskiG ) |
| 116 |
11
|
adantr |
|- ( ( ph /\ F = C ) -> C e. P ) |
| 117 |
12
|
adantr |
|- ( ( ph /\ F = C ) -> E e. P ) |
| 118 |
19
|
adantr |
|- ( ( ph /\ F = C ) -> ( C .- E ) = ( C .- F ) ) |
| 119 |
|
simpr |
|- ( ( ph /\ F = C ) -> F = C ) |
| 120 |
119
|
oveq2d |
|- ( ( ph /\ F = C ) -> ( C .- F ) = ( C .- C ) ) |
| 121 |
118 120
|
eqtrd |
|- ( ( ph /\ F = C ) -> ( C .- E ) = ( C .- C ) ) |
| 122 |
1 2 3 115 116 117 116 121
|
axtgcgrid |
|- ( ( ph /\ F = C ) -> C = E ) |
| 123 |
122
|
eqcomd |
|- ( ( ph /\ F = C ) -> E = C ) |
| 124 |
123
|
adantlr |
|- ( ( ( ph /\ E =/= C ) /\ F = C ) -> E = C ) |
| 125 |
|
simplr |
|- ( ( ( ph /\ E =/= C ) /\ F = C ) -> E =/= C ) |
| 126 |
125
|
neneqd |
|- ( ( ( ph /\ E =/= C ) /\ F = C ) -> -. E = C ) |
| 127 |
124 126
|
pm2.65da |
|- ( ( ph /\ E =/= C ) -> -. F = C ) |
| 128 |
127
|
neqned |
|- ( ( ph /\ E =/= C ) -> F =/= C ) |
| 129 |
128
|
adantr |
|- ( ( ( ph /\ E =/= C ) /\ B =/= C ) -> F =/= C ) |
| 130 |
1 2 3 6 10 11 13 17
|
tgbtwncom |
|- ( ph -> C e. ( F I B ) ) |
| 131 |
130
|
ad2antrr |
|- ( ( ( ph /\ E =/= C ) /\ B =/= C ) -> C e. ( F I B ) ) |
| 132 |
1 2 3 4 5 110 113 56 114
|
mirbtwn |
|- ( ( ( ph /\ E =/= C ) /\ B =/= C ) -> C e. ( ( ( S ` C ) ` F ) I F ) ) |
| 133 |
1 2 3 110 112 113 114 132
|
tgbtwncom |
|- ( ( ( ph /\ E =/= C ) /\ B =/= C ) -> C e. ( F I ( ( S ` C ) ` F ) ) ) |
| 134 |
1 3 110 114 113 111 112 129 131 133
|
tgbtwnconn2 |
|- ( ( ( ph /\ E =/= C ) /\ B =/= C ) -> ( B e. ( C I ( ( S ` C ) ` F ) ) \/ ( ( S ` C ) ` F ) e. ( C I B ) ) ) |
| 135 |
23 18 19
|
3brtr3d |
|- ( ph -> ( C .- B ) .<_ ( C .- F ) ) |
| 136 |
135
|
adantr |
|- ( ( ph /\ E =/= C ) -> ( C .- B ) .<_ ( C .- F ) ) |
| 137 |
1 2 3 4 5 53 55 56 76
|
mircgr |
|- ( ( ph /\ E =/= C ) -> ( C .- ( ( S ` C ) ` F ) ) = ( C .- F ) ) |
| 138 |
136 137
|
breqtrrd |
|- ( ( ph /\ E =/= C ) -> ( C .- B ) .<_ ( C .- ( ( S ` C ) ` F ) ) ) |
| 139 |
138
|
adantr |
|- ( ( ( ph /\ E =/= C ) /\ B =/= C ) -> ( C .- B ) .<_ ( C .- ( ( S ` C ) ` F ) ) ) |
| 140 |
1 2 3 22 110 111 112 113 111 134 139
|
legbtwn |
|- ( ( ( ph /\ E =/= C ) /\ B =/= C ) -> B e. ( C I ( ( S ` C ) ` F ) ) ) |
| 141 |
109 140
|
pm2.61dane |
|- ( ( ph /\ E =/= C ) -> B e. ( C I ( ( S ` C ) ` F ) ) ) |
| 142 |
1 2 3 53 55 71 77 141
|
tgbtwncom |
|- ( ( ph /\ E =/= C ) -> B e. ( ( ( S ` C ) ` F ) I C ) ) |
| 143 |
19
|
adantr |
|- ( ( ph /\ E =/= C ) -> ( C .- E ) = ( C .- F ) ) |
| 144 |
143 97 137
|
3eqtr4d |
|- ( ( ph /\ E =/= C ) -> ( C .- ( ( S ` C ) ` E ) ) = ( C .- ( ( S ` C ) ` F ) ) ) |
| 145 |
1 2 3 53 55 75 55 77 144
|
tgcgrcomlr |
|- ( ( ph /\ E =/= C ) -> ( ( ( S ` C ) ` E ) .- C ) = ( ( ( S ` C ) ` F ) .- C ) ) |
| 146 |
18
|
adantr |
|- ( ( ph /\ E =/= C ) -> ( C .- A ) = ( C .- B ) ) |
| 147 |
1 2 3 53 55 69 55 71 146
|
tgcgrcomlr |
|- ( ( ph /\ E =/= C ) -> ( A .- C ) = ( B .- C ) ) |
| 148 |
|
eqid |
|- ( S ` ( ( S ` C ) ` Y ) ) = ( S ` ( ( S ` C ) ` Y ) ) |
| 149 |
1 2 3 4 5 53 59 148 75
|
mircgr |
|- ( ( ph /\ E =/= C ) -> ( ( ( S ` C ) ` Y ) .- ( ( S ` ( ( S ` C ) ` Y ) ) ` ( ( S ` C ) ` E ) ) ) = ( ( ( S ` C ) ` Y ) .- ( ( S ` C ) ` E ) ) ) |
| 150 |
|
eqid |
|- ( ( S ` C ) ` Y ) = ( ( S ` C ) ` Y ) |
| 151 |
|
eqid |
|- ( ( S ` C ) ` E ) = ( ( S ` C ) ` E ) |
| 152 |
|
eqid |
|- ( ( S ` C ) ` F ) = ( ( S ` C ) ` F ) |
| 153 |
21
|
adantr |
|- ( ( ph /\ E =/= C ) -> F = ( N ` E ) ) |
| 154 |
8
|
fveq1i |
|- ( N ` E ) = ( ( S ` Y ) ` E ) |
| 155 |
153 154
|
eqtr2di |
|- ( ( ph /\ E =/= C ) -> ( ( S ` Y ) ` E ) = F ) |
| 156 |
1 2 3 4 5 53 56 150 151 152 55 58 74 76 155
|
mirauto |
|- ( ( ph /\ E =/= C ) -> ( ( S ` ( ( S ` C ) ` Y ) ) ` ( ( S ` C ) ` E ) ) = ( ( S ` C ) ` F ) ) |
| 157 |
156
|
oveq2d |
|- ( ( ph /\ E =/= C ) -> ( ( ( S ` C ) ` Y ) .- ( ( S ` ( ( S ` C ) ` Y ) ) ` ( ( S ` C ) ` E ) ) ) = ( ( ( S ` C ) ` Y ) .- ( ( S ` C ) ` F ) ) ) |
| 158 |
149 157
|
eqtr3d |
|- ( ( ph /\ E =/= C ) -> ( ( ( S ` C ) ` Y ) .- ( ( S ` C ) ` E ) ) = ( ( ( S ` C ) ` Y ) .- ( ( S ` C ) ` F ) ) ) |
| 159 |
1 2 3 53 59 75 59 77 158
|
tgcgrcomlr |
|- ( ( ph /\ E =/= C ) -> ( ( ( S ` C ) ` E ) .- ( ( S ` C ) ` Y ) ) = ( ( ( S ` C ) ` F ) .- ( ( S ` C ) ` Y ) ) ) |
| 160 |
|
eqidd |
|- ( ( ph /\ E =/= C ) -> ( C .- ( ( S ` C ) ` Y ) ) = ( C .- ( ( S ` C ) ` Y ) ) ) |
| 161 |
1 2 3 53 75 69 55 59 77 71 55 59 102 142 145 147 159 160
|
tgifscgr |
|- ( ( ph /\ E =/= C ) -> ( A .- ( ( S ` C ) ` Y ) ) = ( B .- ( ( S ` C ) ` Y ) ) ) |
| 162 |
1 2 3 53 69 59 71 59 161
|
tgcgrcomlr |
|- ( ( ph /\ E =/= C ) -> ( ( ( S ` C ) ` Y ) .- A ) = ( ( ( S ` C ) ` Y ) .- B ) ) |
| 163 |
162
|
ad3antrrr |
|- ( ( ( ( ( ph /\ E =/= C ) /\ q e. P ) /\ ( q e. ( ( ( S ` C ) ` Y ) I C ) /\ q e. ( A I B ) ) ) /\ ( ( S ` C ) ` Y ) = C ) -> ( ( ( S ` C ) ` Y ) .- A ) = ( ( ( S ` C ) ` Y ) .- B ) ) |
| 164 |
54
|
adantr |
|- ( ( ( ( ( ph /\ E =/= C ) /\ q e. P ) /\ ( q e. ( ( ( S ` C ) ` Y ) I C ) /\ q e. ( A I B ) ) ) /\ ( ( S ` C ) ` Y ) = C ) -> G e. TarskiG ) |
| 165 |
60
|
adantr |
|- ( ( ( ( ( ph /\ E =/= C ) /\ q e. P ) /\ ( q e. ( ( ( S ` C ) ` Y ) I C ) /\ q e. ( A I B ) ) ) /\ ( ( S ` C ) ` Y ) = C ) -> ( ( S ` C ) ` Y ) e. P ) |
| 166 |
61
|
adantr |
|- ( ( ( ( ( ph /\ E =/= C ) /\ q e. P ) /\ ( q e. ( ( ( S ` C ) ` Y ) I C ) /\ q e. ( A I B ) ) ) /\ ( ( S ` C ) ` Y ) = C ) -> q e. P ) |
| 167 |
64
|
adantr |
|- ( ( ( ( ( ph /\ E =/= C ) /\ q e. P ) /\ ( q e. ( ( ( S ` C ) ` Y ) I C ) /\ q e. ( A I B ) ) ) /\ ( ( S ` C ) ` Y ) = C ) -> q e. ( ( ( S ` C ) ` Y ) I C ) ) |
| 168 |
|
simpr |
|- ( ( ( ( ( ph /\ E =/= C ) /\ q e. P ) /\ ( q e. ( ( ( S ` C ) ` Y ) I C ) /\ q e. ( A I B ) ) ) /\ ( ( S ` C ) ` Y ) = C ) -> ( ( S ` C ) ` Y ) = C ) |
| 169 |
168
|
oveq2d |
|- ( ( ( ( ( ph /\ E =/= C ) /\ q e. P ) /\ ( q e. ( ( ( S ` C ) ` Y ) I C ) /\ q e. ( A I B ) ) ) /\ ( ( S ` C ) ` Y ) = C ) -> ( ( ( S ` C ) ` Y ) I ( ( S ` C ) ` Y ) ) = ( ( ( S ` C ) ` Y ) I C ) ) |
| 170 |
167 169
|
eleqtrrd |
|- ( ( ( ( ( ph /\ E =/= C ) /\ q e. P ) /\ ( q e. ( ( ( S ` C ) ` Y ) I C ) /\ q e. ( A I B ) ) ) /\ ( ( S ` C ) ` Y ) = C ) -> q e. ( ( ( S ` C ) ` Y ) I ( ( S ` C ) ` Y ) ) ) |
| 171 |
1 2 3 164 165 166 170
|
axtgbtwnid |
|- ( ( ( ( ( ph /\ E =/= C ) /\ q e. P ) /\ ( q e. ( ( ( S ` C ) ` Y ) I C ) /\ q e. ( A I B ) ) ) /\ ( ( S ` C ) ` Y ) = C ) -> ( ( S ` C ) ` Y ) = q ) |
| 172 |
171
|
oveq1d |
|- ( ( ( ( ( ph /\ E =/= C ) /\ q e. P ) /\ ( q e. ( ( ( S ` C ) ` Y ) I C ) /\ q e. ( A I B ) ) ) /\ ( ( S ` C ) ` Y ) = C ) -> ( ( ( S ` C ) ` Y ) .- A ) = ( q .- A ) ) |
| 173 |
171
|
oveq1d |
|- ( ( ( ( ( ph /\ E =/= C ) /\ q e. P ) /\ ( q e. ( ( ( S ` C ) ` Y ) I C ) /\ q e. ( A I B ) ) ) /\ ( ( S ` C ) ` Y ) = C ) -> ( ( ( S ` C ) ` Y ) .- B ) = ( q .- B ) ) |
| 174 |
163 172 173
|
3eqtr3d |
|- ( ( ( ( ( ph /\ E =/= C ) /\ q e. P ) /\ ( q e. ( ( ( S ` C ) ` Y ) I C ) /\ q e. ( A I B ) ) ) /\ ( ( S ` C ) ` Y ) = C ) -> ( q .- A ) = ( q .- B ) ) |
| 175 |
53
|
ad3antrrr |
|- ( ( ( ( ( ph /\ E =/= C ) /\ q e. P ) /\ ( q e. ( ( ( S ` C ) ` Y ) I C ) /\ q e. ( A I B ) ) ) /\ ( ( S ` C ) ` Y ) =/= C ) -> G e. TarskiG ) |
| 176 |
59
|
ad3antrrr |
|- ( ( ( ( ( ph /\ E =/= C ) /\ q e. P ) /\ ( q e. ( ( ( S ` C ) ` Y ) I C ) /\ q e. ( A I B ) ) ) /\ ( ( S ` C ) ` Y ) =/= C ) -> ( ( S ` C ) ` Y ) e. P ) |
| 177 |
55
|
ad3antrrr |
|- ( ( ( ( ( ph /\ E =/= C ) /\ q e. P ) /\ ( q e. ( ( ( S ` C ) ` Y ) I C ) /\ q e. ( A I B ) ) ) /\ ( ( S ` C ) ` Y ) =/= C ) -> C e. P ) |
| 178 |
61
|
adantr |
|- ( ( ( ( ( ph /\ E =/= C ) /\ q e. P ) /\ ( q e. ( ( ( S ` C ) ` Y ) I C ) /\ q e. ( A I B ) ) ) /\ ( ( S ` C ) ` Y ) =/= C ) -> q e. P ) |
| 179 |
|
eqid |
|- ( cgrG ` G ) = ( cgrG ` G ) |
| 180 |
69
|
ad3antrrr |
|- ( ( ( ( ( ph /\ E =/= C ) /\ q e. P ) /\ ( q e. ( ( ( S ` C ) ` Y ) I C ) /\ q e. ( A I B ) ) ) /\ ( ( S ` C ) ` Y ) =/= C ) -> A e. P ) |
| 181 |
71
|
ad3antrrr |
|- ( ( ( ( ( ph /\ E =/= C ) /\ q e. P ) /\ ( q e. ( ( ( S ` C ) ` Y ) I C ) /\ q e. ( A I B ) ) ) /\ ( ( S ` C ) ` Y ) =/= C ) -> B e. P ) |
| 182 |
|
simpr |
|- ( ( ( ( ( ph /\ E =/= C ) /\ q e. P ) /\ ( q e. ( ( ( S ` C ) ` Y ) I C ) /\ q e. ( A I B ) ) ) /\ ( ( S ` C ) ` Y ) =/= C ) -> ( ( S ` C ) ` Y ) =/= C ) |
| 183 |
60
|
adantr |
|- ( ( ( ( ( ph /\ E =/= C ) /\ q e. P ) /\ ( q e. ( ( ( S ` C ) ` Y ) I C ) /\ q e. ( A I B ) ) ) /\ ( ( S ` C ) ` Y ) =/= C ) -> ( ( S ` C ) ` Y ) e. P ) |
| 184 |
64
|
adantr |
|- ( ( ( ( ( ph /\ E =/= C ) /\ q e. P ) /\ ( q e. ( ( ( S ` C ) ` Y ) I C ) /\ q e. ( A I B ) ) ) /\ ( ( S ` C ) ` Y ) =/= C ) -> q e. ( ( ( S ` C ) ` Y ) I C ) ) |
| 185 |
1 4 3 175 183 178 177 184
|
btwncolg3 |
|- ( ( ( ( ( ph /\ E =/= C ) /\ q e. P ) /\ ( q e. ( ( ( S ` C ) ` Y ) I C ) /\ q e. ( A I B ) ) ) /\ ( ( S ` C ) ` Y ) =/= C ) -> ( C e. ( ( ( S ` C ) ` Y ) L q ) \/ ( ( S ` C ) ` Y ) = q ) ) |
| 186 |
162
|
ad3antrrr |
|- ( ( ( ( ( ph /\ E =/= C ) /\ q e. P ) /\ ( q e. ( ( ( S ` C ) ` Y ) I C ) /\ q e. ( A I B ) ) ) /\ ( ( S ` C ) ` Y ) =/= C ) -> ( ( ( S ` C ) ` Y ) .- A ) = ( ( ( S ` C ) ` Y ) .- B ) ) |
| 187 |
146
|
ad3antrrr |
|- ( ( ( ( ( ph /\ E =/= C ) /\ q e. P ) /\ ( q e. ( ( ( S ` C ) ` Y ) I C ) /\ q e. ( A I B ) ) ) /\ ( ( S ` C ) ` Y ) =/= C ) -> ( C .- A ) = ( C .- B ) ) |
| 188 |
1 4 3 175 176 177 178 179 180 181 2 182 185 186 187
|
lncgr |
|- ( ( ( ( ( ph /\ E =/= C ) /\ q e. P ) /\ ( q e. ( ( ( S ` C ) ` Y ) I C ) /\ q e. ( A I B ) ) ) /\ ( ( S ` C ) ` Y ) =/= C ) -> ( q .- A ) = ( q .- B ) ) |
| 189 |
174 188
|
pm2.61dane |
|- ( ( ( ( ph /\ E =/= C ) /\ q e. P ) /\ ( q e. ( ( ( S ` C ) ` Y ) I C ) /\ q e. ( A I B ) ) ) -> ( q .- A ) = ( q .- B ) ) |
| 190 |
189
|
eqcomd |
|- ( ( ( ( ph /\ E =/= C ) /\ q e. P ) /\ ( q e. ( ( ( S ` C ) ` Y ) I C ) /\ q e. ( A I B ) ) ) -> ( q .- B ) = ( q .- A ) ) |
| 191 |
|
simprr |
|- ( ( ( ( ph /\ E =/= C ) /\ q e. P ) /\ ( q e. ( ( ( S ` C ) ` Y ) I C ) /\ q e. ( A I B ) ) ) -> q e. ( A I B ) ) |
| 192 |
1 2 3 54 70 61 72 191
|
tgbtwncom |
|- ( ( ( ( ph /\ E =/= C ) /\ q e. P ) /\ ( q e. ( ( ( S ` C ) ` Y ) I C ) /\ q e. ( A I B ) ) ) -> q e. ( B I A ) ) |
| 193 |
1 2 3 4 5 54 61 73 70 72 190 192
|
ismir |
|- ( ( ( ( ph /\ E =/= C ) /\ q e. P ) /\ ( q e. ( ( ( S ` C ) ` Y ) I C ) /\ q e. ( A I B ) ) ) -> B = ( ( S ` q ) ` A ) ) |
| 194 |
193
|
eqcomd |
|- ( ( ( ( ph /\ E =/= C ) /\ q e. P ) /\ ( q e. ( ( ( S ` C ) ` Y ) I C ) /\ q e. ( A I B ) ) ) -> ( ( S ` q ) ` A ) = B ) |
| 195 |
20
|
ad3antrrr |
|- ( ( ( ( ph /\ E =/= C ) /\ q e. P ) /\ ( q e. ( ( ( S ` C ) ` Y ) I C ) /\ q e. ( A I B ) ) ) -> B = ( M ` A ) ) |
| 196 |
7
|
fveq1i |
|- ( M ` A ) = ( ( S ` X ) ` A ) |
| 197 |
195 196
|
eqtr2di |
|- ( ( ( ( ph /\ E =/= C ) /\ q e. P ) /\ ( q e. ( ( ( S ` C ) ` Y ) I C ) /\ q e. ( A I B ) ) ) -> ( ( S ` X ) ` A ) = B ) |
| 198 |
1 2 3 4 5 54 61 68 70 72 194 197
|
miduniq |
|- ( ( ( ( ph /\ E =/= C ) /\ q e. P ) /\ ( q e. ( ( ( S ` C ) ` Y ) I C ) /\ q e. ( A I B ) ) ) -> q = X ) |
| 199 |
198
|
oveq1d |
|- ( ( ( ( ph /\ E =/= C ) /\ q e. P ) /\ ( q e. ( ( ( S ` C ) ` Y ) I C ) /\ q e. ( A I B ) ) ) -> ( q I Y ) = ( X I Y ) ) |
| 200 |
67 199
|
eleqtrd |
|- ( ( ( ( ph /\ E =/= C ) /\ q e. P ) /\ ( q e. ( ( ( S ` C ) ` Y ) I C ) /\ q e. ( A I B ) ) ) -> C e. ( X I Y ) ) |
| 201 |
1 2 3 4 5 53 58 8 74
|
mirbtwn |
|- ( ( ph /\ E =/= C ) -> Y e. ( ( N ` E ) I E ) ) |
| 202 |
153
|
oveq1d |
|- ( ( ph /\ E =/= C ) -> ( F I E ) = ( ( N ` E ) I E ) ) |
| 203 |
201 202
|
eleqtrrd |
|- ( ( ph /\ E =/= C ) -> Y e. ( F I E ) ) |
| 204 |
1 2 3 53 76 58 74 203
|
tgbtwncom |
|- ( ( ph /\ E =/= C ) -> Y e. ( E I F ) ) |
| 205 |
1 2 3 4 5 53 55 56 74 58 76 204
|
mirbtwni |
|- ( ( ph /\ E =/= C ) -> ( ( S ` C ) ` Y ) e. ( ( ( S ` C ) ` E ) I ( ( S ` C ) ` F ) ) ) |
| 206 |
1 2 3 53 75 69 55 77 71 59 102 142 205
|
tgtrisegint |
|- ( ( ph /\ E =/= C ) -> E. q e. P ( q e. ( ( ( S ` C ) ` Y ) I C ) /\ q e. ( A I B ) ) ) |
| 207 |
200 206
|
r19.29a |
|- ( ( ph /\ E =/= C ) -> C e. ( X I Y ) ) |
| 208 |
52 207
|
pm2.61dane |
|- ( ph -> C e. ( X I Y ) ) |