Description: Deduce equality from "less than" null segments. (Contributed by Thierry Arnoux, 12-Aug-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | legval.p | |- P = ( Base ` G ) |
|
| legval.d | |- .- = ( dist ` G ) |
||
| legval.i | |- I = ( Itv ` G ) |
||
| legval.l | |- .<_ = ( leG ` G ) |
||
| legval.g | |- ( ph -> G e. TarskiG ) |
||
| legid.a | |- ( ph -> A e. P ) |
||
| legid.b | |- ( ph -> B e. P ) |
||
| legtrd.c | |- ( ph -> C e. P ) |
||
| legtrd.d | |- ( ph -> D e. P ) |
||
| legeq.1 | |- ( ph -> ( A .- B ) .<_ ( C .- C ) ) |
||
| Assertion | legeq | |- ( ph -> A = B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | legval.p | |- P = ( Base ` G ) |
|
| 2 | legval.d | |- .- = ( dist ` G ) |
|
| 3 | legval.i | |- I = ( Itv ` G ) |
|
| 4 | legval.l | |- .<_ = ( leG ` G ) |
|
| 5 | legval.g | |- ( ph -> G e. TarskiG ) |
|
| 6 | legid.a | |- ( ph -> A e. P ) |
|
| 7 | legid.b | |- ( ph -> B e. P ) |
|
| 8 | legtrd.c | |- ( ph -> C e. P ) |
|
| 9 | legtrd.d | |- ( ph -> D e. P ) |
|
| 10 | legeq.1 | |- ( ph -> ( A .- B ) .<_ ( C .- C ) ) |
|
| 11 | 1 2 3 4 5 8 6 6 7 | leg0 | |- ( ph -> ( C .- C ) .<_ ( A .- B ) ) |
| 12 | 1 2 3 4 5 6 7 8 8 10 11 | legtri3 | |- ( ph -> ( A .- B ) = ( C .- C ) ) |
| 13 | 1 2 3 5 6 7 8 12 | axtgcgrid | |- ( ph -> A = B ) |