| Step | Hyp | Ref | Expression | 
						
							| 1 |  | legval.p |  |-  P = ( Base ` G ) | 
						
							| 2 |  | legval.d |  |-  .- = ( dist ` G ) | 
						
							| 3 |  | legval.i |  |-  I = ( Itv ` G ) | 
						
							| 4 |  | legval.l |  |-  .<_ = ( leG ` G ) | 
						
							| 5 |  | legval.g |  |-  ( ph -> G e. TarskiG ) | 
						
							| 6 |  | legid.a |  |-  ( ph -> A e. P ) | 
						
							| 7 |  | legid.b |  |-  ( ph -> B e. P ) | 
						
							| 8 |  | legtrd.c |  |-  ( ph -> C e. P ) | 
						
							| 9 |  | legtrd.d |  |-  ( ph -> D e. P ) | 
						
							| 10 |  | legbtwn.1 |  |-  ( ph -> ( A e. ( C I B ) \/ B e. ( C I A ) ) ) | 
						
							| 11 |  | legbtwn.2 |  |-  ( ph -> ( C .- A ) .<_ ( C .- B ) ) | 
						
							| 12 |  | simpr |  |-  ( ( ph /\ A e. ( C I B ) ) -> A e. ( C I B ) ) | 
						
							| 13 | 5 | adantr |  |-  ( ( ph /\ B e. ( C I A ) ) -> G e. TarskiG ) | 
						
							| 14 | 6 | adantr |  |-  ( ( ph /\ B e. ( C I A ) ) -> A e. P ) | 
						
							| 15 | 7 | adantr |  |-  ( ( ph /\ B e. ( C I A ) ) -> B e. P ) | 
						
							| 16 | 8 | adantr |  |-  ( ( ph /\ B e. ( C I A ) ) -> C e. P ) | 
						
							| 17 |  | simpr |  |-  ( ( ph /\ B e. ( C I A ) ) -> B e. ( C I A ) ) | 
						
							| 18 | 1 2 3 13 16 15 14 17 | tgbtwncom |  |-  ( ( ph /\ B e. ( C I A ) ) -> B e. ( A I C ) ) | 
						
							| 19 | 1 2 3 13 15 16 | tgbtwntriv1 |  |-  ( ( ph /\ B e. ( C I A ) ) -> B e. ( B I C ) ) | 
						
							| 20 | 11 | adantr |  |-  ( ( ph /\ B e. ( C I A ) ) -> ( C .- A ) .<_ ( C .- B ) ) | 
						
							| 21 | 1 2 3 4 13 16 15 14 17 | btwnleg |  |-  ( ( ph /\ B e. ( C I A ) ) -> ( C .- B ) .<_ ( C .- A ) ) | 
						
							| 22 | 1 2 3 4 13 16 14 16 15 20 21 | legtri3 |  |-  ( ( ph /\ B e. ( C I A ) ) -> ( C .- A ) = ( C .- B ) ) | 
						
							| 23 | 1 2 3 13 16 14 16 15 22 | tgcgrcomlr |  |-  ( ( ph /\ B e. ( C I A ) ) -> ( A .- C ) = ( B .- C ) ) | 
						
							| 24 |  | eqidd |  |-  ( ( ph /\ B e. ( C I A ) ) -> ( B .- C ) = ( B .- C ) ) | 
						
							| 25 | 1 2 3 13 14 15 16 15 15 16 18 19 23 24 | tgcgrsub |  |-  ( ( ph /\ B e. ( C I A ) ) -> ( A .- B ) = ( B .- B ) ) | 
						
							| 26 | 1 2 3 13 14 15 15 25 | axtgcgrid |  |-  ( ( ph /\ B e. ( C I A ) ) -> A = B ) | 
						
							| 27 | 26 17 | eqeltrd |  |-  ( ( ph /\ B e. ( C I A ) ) -> A e. ( C I A ) ) | 
						
							| 28 | 26 | oveq2d |  |-  ( ( ph /\ B e. ( C I A ) ) -> ( C I A ) = ( C I B ) ) | 
						
							| 29 | 27 28 | eleqtrd |  |-  ( ( ph /\ B e. ( C I A ) ) -> A e. ( C I B ) ) | 
						
							| 30 | 12 29 10 | mpjaodan |  |-  ( ph -> A e. ( C I B ) ) |