| Step |
Hyp |
Ref |
Expression |
| 1 |
|
legval.p |
|- P = ( Base ` G ) |
| 2 |
|
legval.d |
|- .- = ( dist ` G ) |
| 3 |
|
legval.i |
|- I = ( Itv ` G ) |
| 4 |
|
legval.l |
|- .<_ = ( leG ` G ) |
| 5 |
|
legval.g |
|- ( ph -> G e. TarskiG ) |
| 6 |
|
legid.a |
|- ( ph -> A e. P ) |
| 7 |
|
legid.b |
|- ( ph -> B e. P ) |
| 8 |
|
legtrd.c |
|- ( ph -> C e. P ) |
| 9 |
|
legtrd.d |
|- ( ph -> D e. P ) |
| 10 |
|
legbtwn.1 |
|- ( ph -> ( A e. ( C I B ) \/ B e. ( C I A ) ) ) |
| 11 |
|
legbtwn.2 |
|- ( ph -> ( C .- A ) .<_ ( C .- B ) ) |
| 12 |
|
simpr |
|- ( ( ph /\ A e. ( C I B ) ) -> A e. ( C I B ) ) |
| 13 |
5
|
adantr |
|- ( ( ph /\ B e. ( C I A ) ) -> G e. TarskiG ) |
| 14 |
6
|
adantr |
|- ( ( ph /\ B e. ( C I A ) ) -> A e. P ) |
| 15 |
7
|
adantr |
|- ( ( ph /\ B e. ( C I A ) ) -> B e. P ) |
| 16 |
8
|
adantr |
|- ( ( ph /\ B e. ( C I A ) ) -> C e. P ) |
| 17 |
|
simpr |
|- ( ( ph /\ B e. ( C I A ) ) -> B e. ( C I A ) ) |
| 18 |
1 2 3 13 16 15 14 17
|
tgbtwncom |
|- ( ( ph /\ B e. ( C I A ) ) -> B e. ( A I C ) ) |
| 19 |
1 2 3 13 15 16
|
tgbtwntriv1 |
|- ( ( ph /\ B e. ( C I A ) ) -> B e. ( B I C ) ) |
| 20 |
11
|
adantr |
|- ( ( ph /\ B e. ( C I A ) ) -> ( C .- A ) .<_ ( C .- B ) ) |
| 21 |
1 2 3 4 13 16 15 14 17
|
btwnleg |
|- ( ( ph /\ B e. ( C I A ) ) -> ( C .- B ) .<_ ( C .- A ) ) |
| 22 |
1 2 3 4 13 16 14 16 15 20 21
|
legtri3 |
|- ( ( ph /\ B e. ( C I A ) ) -> ( C .- A ) = ( C .- B ) ) |
| 23 |
1 2 3 13 16 14 16 15 22
|
tgcgrcomlr |
|- ( ( ph /\ B e. ( C I A ) ) -> ( A .- C ) = ( B .- C ) ) |
| 24 |
|
eqidd |
|- ( ( ph /\ B e. ( C I A ) ) -> ( B .- C ) = ( B .- C ) ) |
| 25 |
1 2 3 13 14 15 16 15 15 16 18 19 23 24
|
tgcgrsub |
|- ( ( ph /\ B e. ( C I A ) ) -> ( A .- B ) = ( B .- B ) ) |
| 26 |
1 2 3 13 14 15 15 25
|
axtgcgrid |
|- ( ( ph /\ B e. ( C I A ) ) -> A = B ) |
| 27 |
26 17
|
eqeltrd |
|- ( ( ph /\ B e. ( C I A ) ) -> A e. ( C I A ) ) |
| 28 |
26
|
oveq2d |
|- ( ( ph /\ B e. ( C I A ) ) -> ( C I A ) = ( C I B ) ) |
| 29 |
27 28
|
eleqtrd |
|- ( ( ph /\ B e. ( C I A ) ) -> A e. ( C I B ) ) |
| 30 |
12 29 10
|
mpjaodan |
|- ( ph -> A e. ( C I B ) ) |