| Step |
Hyp |
Ref |
Expression |
| 1 |
|
legval.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
| 2 |
|
legval.d |
⊢ − = ( dist ‘ 𝐺 ) |
| 3 |
|
legval.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
| 4 |
|
legval.l |
⊢ ≤ = ( ≤G ‘ 𝐺 ) |
| 5 |
|
legval.g |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
| 6 |
|
legid.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑃 ) |
| 7 |
|
legid.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑃 ) |
| 8 |
|
legtrd.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝑃 ) |
| 9 |
|
legtrd.d |
⊢ ( 𝜑 → 𝐷 ∈ 𝑃 ) |
| 10 |
|
legbtwn.1 |
⊢ ( 𝜑 → ( 𝐴 ∈ ( 𝐶 𝐼 𝐵 ) ∨ 𝐵 ∈ ( 𝐶 𝐼 𝐴 ) ) ) |
| 11 |
|
legbtwn.2 |
⊢ ( 𝜑 → ( 𝐶 − 𝐴 ) ≤ ( 𝐶 − 𝐵 ) ) |
| 12 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ( 𝐶 𝐼 𝐵 ) ) → 𝐴 ∈ ( 𝐶 𝐼 𝐵 ) ) |
| 13 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ( 𝐶 𝐼 𝐴 ) ) → 𝐺 ∈ TarskiG ) |
| 14 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ( 𝐶 𝐼 𝐴 ) ) → 𝐴 ∈ 𝑃 ) |
| 15 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ( 𝐶 𝐼 𝐴 ) ) → 𝐵 ∈ 𝑃 ) |
| 16 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ( 𝐶 𝐼 𝐴 ) ) → 𝐶 ∈ 𝑃 ) |
| 17 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ( 𝐶 𝐼 𝐴 ) ) → 𝐵 ∈ ( 𝐶 𝐼 𝐴 ) ) |
| 18 |
1 2 3 13 16 15 14 17
|
tgbtwncom |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ( 𝐶 𝐼 𝐴 ) ) → 𝐵 ∈ ( 𝐴 𝐼 𝐶 ) ) |
| 19 |
1 2 3 13 15 16
|
tgbtwntriv1 |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ( 𝐶 𝐼 𝐴 ) ) → 𝐵 ∈ ( 𝐵 𝐼 𝐶 ) ) |
| 20 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ( 𝐶 𝐼 𝐴 ) ) → ( 𝐶 − 𝐴 ) ≤ ( 𝐶 − 𝐵 ) ) |
| 21 |
1 2 3 4 13 16 15 14 17
|
btwnleg |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ( 𝐶 𝐼 𝐴 ) ) → ( 𝐶 − 𝐵 ) ≤ ( 𝐶 − 𝐴 ) ) |
| 22 |
1 2 3 4 13 16 14 16 15 20 21
|
legtri3 |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ( 𝐶 𝐼 𝐴 ) ) → ( 𝐶 − 𝐴 ) = ( 𝐶 − 𝐵 ) ) |
| 23 |
1 2 3 13 16 14 16 15 22
|
tgcgrcomlr |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ( 𝐶 𝐼 𝐴 ) ) → ( 𝐴 − 𝐶 ) = ( 𝐵 − 𝐶 ) ) |
| 24 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ( 𝐶 𝐼 𝐴 ) ) → ( 𝐵 − 𝐶 ) = ( 𝐵 − 𝐶 ) ) |
| 25 |
1 2 3 13 14 15 16 15 15 16 18 19 23 24
|
tgcgrsub |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ( 𝐶 𝐼 𝐴 ) ) → ( 𝐴 − 𝐵 ) = ( 𝐵 − 𝐵 ) ) |
| 26 |
1 2 3 13 14 15 15 25
|
axtgcgrid |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ( 𝐶 𝐼 𝐴 ) ) → 𝐴 = 𝐵 ) |
| 27 |
26 17
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ( 𝐶 𝐼 𝐴 ) ) → 𝐴 ∈ ( 𝐶 𝐼 𝐴 ) ) |
| 28 |
26
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ( 𝐶 𝐼 𝐴 ) ) → ( 𝐶 𝐼 𝐴 ) = ( 𝐶 𝐼 𝐵 ) ) |
| 29 |
27 28
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ( 𝐶 𝐼 𝐴 ) ) → 𝐴 ∈ ( 𝐶 𝐼 𝐵 ) ) |
| 30 |
12 29 10
|
mpjaodan |
⊢ ( 𝜑 → 𝐴 ∈ ( 𝐶 𝐼 𝐵 ) ) |