Step |
Hyp |
Ref |
Expression |
1 |
|
legval.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
2 |
|
legval.d |
⊢ − = ( dist ‘ 𝐺 ) |
3 |
|
legval.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
4 |
|
legval.l |
⊢ ≤ = ( ≤G ‘ 𝐺 ) |
5 |
|
legval.g |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
6 |
|
legid.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑃 ) |
7 |
|
legid.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑃 ) |
8 |
|
legtrd.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝑃 ) |
9 |
|
legtrd.d |
⊢ ( 𝜑 → 𝐷 ∈ 𝑃 ) |
10 |
|
tgcgrsub2.d |
⊢ ( 𝜑 → 𝐷 ∈ 𝑃 ) |
11 |
|
tgcgrsub2.e |
⊢ ( 𝜑 → 𝐸 ∈ 𝑃 ) |
12 |
|
tgcgrsub2.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝑃 ) |
13 |
|
tgcgrsub2.1 |
⊢ ( 𝜑 → ( 𝐵 ∈ ( 𝐴 𝐼 𝐶 ) ∨ 𝐶 ∈ ( 𝐴 𝐼 𝐵 ) ) ) |
14 |
|
tgcgrsub2.2 |
⊢ ( 𝜑 → ( 𝐸 ∈ ( 𝐷 𝐼 𝐹 ) ∨ 𝐹 ∈ ( 𝐷 𝐼 𝐸 ) ) ) |
15 |
|
tgcgrsub2.3 |
⊢ ( 𝜑 → ( 𝐴 − 𝐵 ) = ( 𝐷 − 𝐸 ) ) |
16 |
|
tgcgrsub2.4 |
⊢ ( 𝜑 → ( 𝐴 − 𝐶 ) = ( 𝐷 − 𝐹 ) ) |
17 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ( 𝐴 𝐼 𝐶 ) ) → 𝐺 ∈ TarskiG ) |
18 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ( 𝐴 𝐼 𝐶 ) ) → 𝐶 ∈ 𝑃 ) |
19 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ( 𝐴 𝐼 𝐶 ) ) → 𝐵 ∈ 𝑃 ) |
20 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ( 𝐴 𝐼 𝐶 ) ) → 𝐹 ∈ 𝑃 ) |
21 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ( 𝐴 𝐼 𝐶 ) ) → 𝐸 ∈ 𝑃 ) |
22 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ( 𝐴 𝐼 𝐶 ) ) → 𝐴 ∈ 𝑃 ) |
23 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ( 𝐴 𝐼 𝐶 ) ) → 𝐷 ∈ 𝑃 ) |
24 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ( 𝐴 𝐼 𝐶 ) ) → 𝐵 ∈ ( 𝐴 𝐼 𝐶 ) ) |
25 |
1 2 3 17 22 19 18 24
|
tgbtwncom |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ( 𝐴 𝐼 𝐶 ) ) → 𝐵 ∈ ( 𝐶 𝐼 𝐴 ) ) |
26 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ( 𝐴 𝐼 𝐶 ) ) → ( 𝐸 ∈ ( 𝐷 𝐼 𝐹 ) ∨ 𝐹 ∈ ( 𝐷 𝐼 𝐸 ) ) ) |
27 |
1 2 3 4 17 22 19 18 24
|
btwnleg |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ( 𝐴 𝐼 𝐶 ) ) → ( 𝐴 − 𝐵 ) ≤ ( 𝐴 − 𝐶 ) ) |
28 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ( 𝐴 𝐼 𝐶 ) ) → ( 𝐴 − 𝐵 ) = ( 𝐷 − 𝐸 ) ) |
29 |
16
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ( 𝐴 𝐼 𝐶 ) ) → ( 𝐴 − 𝐶 ) = ( 𝐷 − 𝐹 ) ) |
30 |
27 28 29
|
3brtr3d |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ( 𝐴 𝐼 𝐶 ) ) → ( 𝐷 − 𝐸 ) ≤ ( 𝐷 − 𝐹 ) ) |
31 |
1 2 3 4 17 21 20 23 23 26 30
|
legbtwn |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ( 𝐴 𝐼 𝐶 ) ) → 𝐸 ∈ ( 𝐷 𝐼 𝐹 ) ) |
32 |
1 2 3 17 23 21 20 31
|
tgbtwncom |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ( 𝐴 𝐼 𝐶 ) ) → 𝐸 ∈ ( 𝐹 𝐼 𝐷 ) ) |
33 |
1 2 3 5 6 8 9 12 16
|
tgcgrcomlr |
⊢ ( 𝜑 → ( 𝐶 − 𝐴 ) = ( 𝐹 − 𝐷 ) ) |
34 |
33
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ( 𝐴 𝐼 𝐶 ) ) → ( 𝐶 − 𝐴 ) = ( 𝐹 − 𝐷 ) ) |
35 |
1 2 3 5 6 7 9 11 15
|
tgcgrcomlr |
⊢ ( 𝜑 → ( 𝐵 − 𝐴 ) = ( 𝐸 − 𝐷 ) ) |
36 |
35
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ( 𝐴 𝐼 𝐶 ) ) → ( 𝐵 − 𝐴 ) = ( 𝐸 − 𝐷 ) ) |
37 |
1 2 3 17 18 19 22 20 21 23 25 32 34 36
|
tgcgrsub |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ( 𝐴 𝐼 𝐶 ) ) → ( 𝐶 − 𝐵 ) = ( 𝐹 − 𝐸 ) ) |
38 |
1 2 3 17 18 19 20 21 37
|
tgcgrcomlr |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ( 𝐴 𝐼 𝐶 ) ) → ( 𝐵 − 𝐶 ) = ( 𝐸 − 𝐹 ) ) |
39 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 𝐴 𝐼 𝐵 ) ) → 𝐺 ∈ TarskiG ) |
40 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 𝐴 𝐼 𝐵 ) ) → 𝐵 ∈ 𝑃 ) |
41 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 𝐴 𝐼 𝐵 ) ) → 𝐶 ∈ 𝑃 ) |
42 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 𝐴 𝐼 𝐵 ) ) → 𝐴 ∈ 𝑃 ) |
43 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 𝐴 𝐼 𝐵 ) ) → 𝐸 ∈ 𝑃 ) |
44 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 𝐴 𝐼 𝐵 ) ) → 𝐹 ∈ 𝑃 ) |
45 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 𝐴 𝐼 𝐵 ) ) → 𝐷 ∈ 𝑃 ) |
46 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 𝐴 𝐼 𝐵 ) ) → 𝐶 ∈ ( 𝐴 𝐼 𝐵 ) ) |
47 |
1 2 3 39 42 41 40 46
|
tgbtwncom |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 𝐴 𝐼 𝐵 ) ) → 𝐶 ∈ ( 𝐵 𝐼 𝐴 ) ) |
48 |
14
|
orcomd |
⊢ ( 𝜑 → ( 𝐹 ∈ ( 𝐷 𝐼 𝐸 ) ∨ 𝐸 ∈ ( 𝐷 𝐼 𝐹 ) ) ) |
49 |
48
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 𝐴 𝐼 𝐵 ) ) → ( 𝐹 ∈ ( 𝐷 𝐼 𝐸 ) ∨ 𝐸 ∈ ( 𝐷 𝐼 𝐹 ) ) ) |
50 |
1 2 3 4 39 42 41 40 46
|
btwnleg |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 𝐴 𝐼 𝐵 ) ) → ( 𝐴 − 𝐶 ) ≤ ( 𝐴 − 𝐵 ) ) |
51 |
16
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 𝐴 𝐼 𝐵 ) ) → ( 𝐴 − 𝐶 ) = ( 𝐷 − 𝐹 ) ) |
52 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 𝐴 𝐼 𝐵 ) ) → ( 𝐴 − 𝐵 ) = ( 𝐷 − 𝐸 ) ) |
53 |
50 51 52
|
3brtr3d |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 𝐴 𝐼 𝐵 ) ) → ( 𝐷 − 𝐹 ) ≤ ( 𝐷 − 𝐸 ) ) |
54 |
1 2 3 4 39 44 43 45 45 49 53
|
legbtwn |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 𝐴 𝐼 𝐵 ) ) → 𝐹 ∈ ( 𝐷 𝐼 𝐸 ) ) |
55 |
1 2 3 39 45 44 43 54
|
tgbtwncom |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 𝐴 𝐼 𝐵 ) ) → 𝐹 ∈ ( 𝐸 𝐼 𝐷 ) ) |
56 |
35
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 𝐴 𝐼 𝐵 ) ) → ( 𝐵 − 𝐴 ) = ( 𝐸 − 𝐷 ) ) |
57 |
33
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 𝐴 𝐼 𝐵 ) ) → ( 𝐶 − 𝐴 ) = ( 𝐹 − 𝐷 ) ) |
58 |
1 2 3 39 40 41 42 43 44 45 47 55 56 57
|
tgcgrsub |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 𝐴 𝐼 𝐵 ) ) → ( 𝐵 − 𝐶 ) = ( 𝐸 − 𝐹 ) ) |
59 |
38 58 13
|
mpjaodan |
⊢ ( 𝜑 → ( 𝐵 − 𝐶 ) = ( 𝐸 − 𝐹 ) ) |