| Step |
Hyp |
Ref |
Expression |
| 1 |
|
legval.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
| 2 |
|
legval.d |
⊢ − = ( dist ‘ 𝐺 ) |
| 3 |
|
legval.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
| 4 |
|
legval.l |
⊢ ≤ = ( ≤G ‘ 𝐺 ) |
| 5 |
|
legval.g |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
| 6 |
|
legid.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑃 ) |
| 7 |
|
legid.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑃 ) |
| 8 |
|
legtrd.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝑃 ) |
| 9 |
|
legtrd.d |
⊢ ( 𝜑 → 𝐷 ∈ 𝑃 ) |
| 10 |
|
tgcgrsub2.d |
⊢ ( 𝜑 → 𝐷 ∈ 𝑃 ) |
| 11 |
|
tgcgrsub2.e |
⊢ ( 𝜑 → 𝐸 ∈ 𝑃 ) |
| 12 |
|
tgcgrsub2.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝑃 ) |
| 13 |
|
tgcgrsub2.1 |
⊢ ( 𝜑 → ( 𝐵 ∈ ( 𝐴 𝐼 𝐶 ) ∨ 𝐶 ∈ ( 𝐴 𝐼 𝐵 ) ) ) |
| 14 |
|
tgcgrsub2.2 |
⊢ ( 𝜑 → ( 𝐸 ∈ ( 𝐷 𝐼 𝐹 ) ∨ 𝐹 ∈ ( 𝐷 𝐼 𝐸 ) ) ) |
| 15 |
|
tgcgrsub2.3 |
⊢ ( 𝜑 → ( 𝐴 − 𝐵 ) = ( 𝐷 − 𝐸 ) ) |
| 16 |
|
tgcgrsub2.4 |
⊢ ( 𝜑 → ( 𝐴 − 𝐶 ) = ( 𝐷 − 𝐹 ) ) |
| 17 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ( 𝐴 𝐼 𝐶 ) ) → 𝐺 ∈ TarskiG ) |
| 18 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ( 𝐴 𝐼 𝐶 ) ) → 𝐶 ∈ 𝑃 ) |
| 19 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ( 𝐴 𝐼 𝐶 ) ) → 𝐵 ∈ 𝑃 ) |
| 20 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ( 𝐴 𝐼 𝐶 ) ) → 𝐹 ∈ 𝑃 ) |
| 21 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ( 𝐴 𝐼 𝐶 ) ) → 𝐸 ∈ 𝑃 ) |
| 22 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ( 𝐴 𝐼 𝐶 ) ) → 𝐴 ∈ 𝑃 ) |
| 23 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ( 𝐴 𝐼 𝐶 ) ) → 𝐷 ∈ 𝑃 ) |
| 24 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ( 𝐴 𝐼 𝐶 ) ) → 𝐵 ∈ ( 𝐴 𝐼 𝐶 ) ) |
| 25 |
1 2 3 17 22 19 18 24
|
tgbtwncom |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ( 𝐴 𝐼 𝐶 ) ) → 𝐵 ∈ ( 𝐶 𝐼 𝐴 ) ) |
| 26 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ( 𝐴 𝐼 𝐶 ) ) → ( 𝐸 ∈ ( 𝐷 𝐼 𝐹 ) ∨ 𝐹 ∈ ( 𝐷 𝐼 𝐸 ) ) ) |
| 27 |
1 2 3 4 17 22 19 18 24
|
btwnleg |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ( 𝐴 𝐼 𝐶 ) ) → ( 𝐴 − 𝐵 ) ≤ ( 𝐴 − 𝐶 ) ) |
| 28 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ( 𝐴 𝐼 𝐶 ) ) → ( 𝐴 − 𝐵 ) = ( 𝐷 − 𝐸 ) ) |
| 29 |
16
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ( 𝐴 𝐼 𝐶 ) ) → ( 𝐴 − 𝐶 ) = ( 𝐷 − 𝐹 ) ) |
| 30 |
27 28 29
|
3brtr3d |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ( 𝐴 𝐼 𝐶 ) ) → ( 𝐷 − 𝐸 ) ≤ ( 𝐷 − 𝐹 ) ) |
| 31 |
1 2 3 4 17 21 20 23 23 26 30
|
legbtwn |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ( 𝐴 𝐼 𝐶 ) ) → 𝐸 ∈ ( 𝐷 𝐼 𝐹 ) ) |
| 32 |
1 2 3 17 23 21 20 31
|
tgbtwncom |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ( 𝐴 𝐼 𝐶 ) ) → 𝐸 ∈ ( 𝐹 𝐼 𝐷 ) ) |
| 33 |
1 2 3 5 6 8 9 12 16
|
tgcgrcomlr |
⊢ ( 𝜑 → ( 𝐶 − 𝐴 ) = ( 𝐹 − 𝐷 ) ) |
| 34 |
33
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ( 𝐴 𝐼 𝐶 ) ) → ( 𝐶 − 𝐴 ) = ( 𝐹 − 𝐷 ) ) |
| 35 |
1 2 3 5 6 7 9 11 15
|
tgcgrcomlr |
⊢ ( 𝜑 → ( 𝐵 − 𝐴 ) = ( 𝐸 − 𝐷 ) ) |
| 36 |
35
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ( 𝐴 𝐼 𝐶 ) ) → ( 𝐵 − 𝐴 ) = ( 𝐸 − 𝐷 ) ) |
| 37 |
1 2 3 17 18 19 22 20 21 23 25 32 34 36
|
tgcgrsub |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ( 𝐴 𝐼 𝐶 ) ) → ( 𝐶 − 𝐵 ) = ( 𝐹 − 𝐸 ) ) |
| 38 |
1 2 3 17 18 19 20 21 37
|
tgcgrcomlr |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ( 𝐴 𝐼 𝐶 ) ) → ( 𝐵 − 𝐶 ) = ( 𝐸 − 𝐹 ) ) |
| 39 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 𝐴 𝐼 𝐵 ) ) → 𝐺 ∈ TarskiG ) |
| 40 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 𝐴 𝐼 𝐵 ) ) → 𝐵 ∈ 𝑃 ) |
| 41 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 𝐴 𝐼 𝐵 ) ) → 𝐶 ∈ 𝑃 ) |
| 42 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 𝐴 𝐼 𝐵 ) ) → 𝐴 ∈ 𝑃 ) |
| 43 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 𝐴 𝐼 𝐵 ) ) → 𝐸 ∈ 𝑃 ) |
| 44 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 𝐴 𝐼 𝐵 ) ) → 𝐹 ∈ 𝑃 ) |
| 45 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 𝐴 𝐼 𝐵 ) ) → 𝐷 ∈ 𝑃 ) |
| 46 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 𝐴 𝐼 𝐵 ) ) → 𝐶 ∈ ( 𝐴 𝐼 𝐵 ) ) |
| 47 |
1 2 3 39 42 41 40 46
|
tgbtwncom |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 𝐴 𝐼 𝐵 ) ) → 𝐶 ∈ ( 𝐵 𝐼 𝐴 ) ) |
| 48 |
14
|
orcomd |
⊢ ( 𝜑 → ( 𝐹 ∈ ( 𝐷 𝐼 𝐸 ) ∨ 𝐸 ∈ ( 𝐷 𝐼 𝐹 ) ) ) |
| 49 |
48
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 𝐴 𝐼 𝐵 ) ) → ( 𝐹 ∈ ( 𝐷 𝐼 𝐸 ) ∨ 𝐸 ∈ ( 𝐷 𝐼 𝐹 ) ) ) |
| 50 |
1 2 3 4 39 42 41 40 46
|
btwnleg |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 𝐴 𝐼 𝐵 ) ) → ( 𝐴 − 𝐶 ) ≤ ( 𝐴 − 𝐵 ) ) |
| 51 |
16
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 𝐴 𝐼 𝐵 ) ) → ( 𝐴 − 𝐶 ) = ( 𝐷 − 𝐹 ) ) |
| 52 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 𝐴 𝐼 𝐵 ) ) → ( 𝐴 − 𝐵 ) = ( 𝐷 − 𝐸 ) ) |
| 53 |
50 51 52
|
3brtr3d |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 𝐴 𝐼 𝐵 ) ) → ( 𝐷 − 𝐹 ) ≤ ( 𝐷 − 𝐸 ) ) |
| 54 |
1 2 3 4 39 44 43 45 45 49 53
|
legbtwn |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 𝐴 𝐼 𝐵 ) ) → 𝐹 ∈ ( 𝐷 𝐼 𝐸 ) ) |
| 55 |
1 2 3 39 45 44 43 54
|
tgbtwncom |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 𝐴 𝐼 𝐵 ) ) → 𝐹 ∈ ( 𝐸 𝐼 𝐷 ) ) |
| 56 |
35
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 𝐴 𝐼 𝐵 ) ) → ( 𝐵 − 𝐴 ) = ( 𝐸 − 𝐷 ) ) |
| 57 |
33
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 𝐴 𝐼 𝐵 ) ) → ( 𝐶 − 𝐴 ) = ( 𝐹 − 𝐷 ) ) |
| 58 |
1 2 3 39 40 41 42 43 44 45 47 55 56 57
|
tgcgrsub |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ( 𝐴 𝐼 𝐵 ) ) → ( 𝐵 − 𝐶 ) = ( 𝐸 − 𝐹 ) ) |
| 59 |
38 58 13
|
mpjaodan |
⊢ ( 𝜑 → ( 𝐵 − 𝐶 ) = ( 𝐸 − 𝐹 ) ) |