| Step | Hyp | Ref | Expression | 
						
							| 1 |  | legval.p | ⊢ 𝑃  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | legval.d | ⊢  −   =  ( dist ‘ 𝐺 ) | 
						
							| 3 |  | legval.i | ⊢ 𝐼  =  ( Itv ‘ 𝐺 ) | 
						
							| 4 |  | legval.l | ⊢  ≤   =  ( ≤G ‘ 𝐺 ) | 
						
							| 5 |  | legval.g | ⊢ ( 𝜑  →  𝐺  ∈  TarskiG ) | 
						
							| 6 |  | legso.a | ⊢ 𝐸  =  (  −   “  ( 𝑃  ×  𝑃 ) ) | 
						
							| 7 |  | legso.f | ⊢ ( 𝜑  →  Fun   −  ) | 
						
							| 8 |  | ltgseg.p | ⊢ ( 𝜑  →  𝐴  ∈  𝐸 ) | 
						
							| 9 |  | simp-4r | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ( 𝑃  ×  𝑃 ) )  ∧  (  −  ‘ 𝑎 )  =  𝐴 )  ∧  𝑥  ∈  𝑃 )  ∧  𝑦  ∈  𝑃 )  ∧  𝑎  =  〈 𝑥 ,  𝑦 〉 )  →  (  −  ‘ 𝑎 )  =  𝐴 ) | 
						
							| 10 |  | simpr | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ( 𝑃  ×  𝑃 ) )  ∧  (  −  ‘ 𝑎 )  =  𝐴 )  ∧  𝑥  ∈  𝑃 )  ∧  𝑦  ∈  𝑃 )  ∧  𝑎  =  〈 𝑥 ,  𝑦 〉 )  →  𝑎  =  〈 𝑥 ,  𝑦 〉 ) | 
						
							| 11 | 10 | fveq2d | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ( 𝑃  ×  𝑃 ) )  ∧  (  −  ‘ 𝑎 )  =  𝐴 )  ∧  𝑥  ∈  𝑃 )  ∧  𝑦  ∈  𝑃 )  ∧  𝑎  =  〈 𝑥 ,  𝑦 〉 )  →  (  −  ‘ 𝑎 )  =  (  −  ‘ 〈 𝑥 ,  𝑦 〉 ) ) | 
						
							| 12 | 9 11 | eqtr3d | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ( 𝑃  ×  𝑃 ) )  ∧  (  −  ‘ 𝑎 )  =  𝐴 )  ∧  𝑥  ∈  𝑃 )  ∧  𝑦  ∈  𝑃 )  ∧  𝑎  =  〈 𝑥 ,  𝑦 〉 )  →  𝐴  =  (  −  ‘ 〈 𝑥 ,  𝑦 〉 ) ) | 
						
							| 13 |  | df-ov | ⊢ ( 𝑥  −  𝑦 )  =  (  −  ‘ 〈 𝑥 ,  𝑦 〉 ) | 
						
							| 14 | 12 13 | eqtr4di | ⊢ ( ( ( ( ( ( 𝜑  ∧  𝑎  ∈  ( 𝑃  ×  𝑃 ) )  ∧  (  −  ‘ 𝑎 )  =  𝐴 )  ∧  𝑥  ∈  𝑃 )  ∧  𝑦  ∈  𝑃 )  ∧  𝑎  =  〈 𝑥 ,  𝑦 〉 )  →  𝐴  =  ( 𝑥  −  𝑦 ) ) | 
						
							| 15 |  | simplr | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ( 𝑃  ×  𝑃 ) )  ∧  (  −  ‘ 𝑎 )  =  𝐴 )  →  𝑎  ∈  ( 𝑃  ×  𝑃 ) ) | 
						
							| 16 |  | elxp2 | ⊢ ( 𝑎  ∈  ( 𝑃  ×  𝑃 )  ↔  ∃ 𝑥  ∈  𝑃 ∃ 𝑦  ∈  𝑃 𝑎  =  〈 𝑥 ,  𝑦 〉 ) | 
						
							| 17 | 15 16 | sylib | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ( 𝑃  ×  𝑃 ) )  ∧  (  −  ‘ 𝑎 )  =  𝐴 )  →  ∃ 𝑥  ∈  𝑃 ∃ 𝑦  ∈  𝑃 𝑎  =  〈 𝑥 ,  𝑦 〉 ) | 
						
							| 18 | 14 17 | reximddv2 | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  ( 𝑃  ×  𝑃 ) )  ∧  (  −  ‘ 𝑎 )  =  𝐴 )  →  ∃ 𝑥  ∈  𝑃 ∃ 𝑦  ∈  𝑃 𝐴  =  ( 𝑥  −  𝑦 ) ) | 
						
							| 19 | 8 6 | eleqtrdi | ⊢ ( 𝜑  →  𝐴  ∈  (  −   “  ( 𝑃  ×  𝑃 ) ) ) | 
						
							| 20 |  | fvelima | ⊢ ( ( Fun   −   ∧  𝐴  ∈  (  −   “  ( 𝑃  ×  𝑃 ) ) )  →  ∃ 𝑎  ∈  ( 𝑃  ×  𝑃 ) (  −  ‘ 𝑎 )  =  𝐴 ) | 
						
							| 21 | 7 19 20 | syl2anc | ⊢ ( 𝜑  →  ∃ 𝑎  ∈  ( 𝑃  ×  𝑃 ) (  −  ‘ 𝑎 )  =  𝐴 ) | 
						
							| 22 | 18 21 | r19.29a | ⊢ ( 𝜑  →  ∃ 𝑥  ∈  𝑃 ∃ 𝑦  ∈  𝑃 𝐴  =  ( 𝑥  −  𝑦 ) ) |