Metamath Proof Explorer


Theorem ltgseg

Description: The set E denotes the possible values of the congruence. (Contributed by Thierry Arnoux, 15-Dec-2019)

Ref Expression
Hypotheses legval.p P = Base G
legval.d - ˙ = dist G
legval.i I = Itv G
legval.l ˙ = 𝒢 G
legval.g φ G 𝒢 Tarski
legso.a E = - ˙ P × P
legso.f φ Fun - ˙
ltgseg.p φ A E
Assertion ltgseg φ x P y P A = x - ˙ y

Proof

Step Hyp Ref Expression
1 legval.p P = Base G
2 legval.d - ˙ = dist G
3 legval.i I = Itv G
4 legval.l ˙ = 𝒢 G
5 legval.g φ G 𝒢 Tarski
6 legso.a E = - ˙ P × P
7 legso.f φ Fun - ˙
8 ltgseg.p φ A E
9 simp-4r φ a P × P - ˙ a = A x P y P a = x y - ˙ a = A
10 simpr φ a P × P - ˙ a = A x P y P a = x y a = x y
11 10 fveq2d φ a P × P - ˙ a = A x P y P a = x y - ˙ a = - ˙ x y
12 9 11 eqtr3d φ a P × P - ˙ a = A x P y P a = x y A = - ˙ x y
13 df-ov x - ˙ y = - ˙ x y
14 12 13 eqtr4di φ a P × P - ˙ a = A x P y P a = x y A = x - ˙ y
15 simplr φ a P × P - ˙ a = A a P × P
16 elxp2 a P × P x P y P a = x y
17 15 16 sylib φ a P × P - ˙ a = A x P y P a = x y
18 14 17 reximddv2 φ a P × P - ˙ a = A x P y P A = x - ˙ y
19 8 6 eleqtrdi φ A - ˙ P × P
20 fvelima Fun - ˙ A - ˙ P × P a P × P - ˙ a = A
21 7 19 20 syl2anc φ a P × P - ˙ a = A
22 18 21 r19.29a φ x P y P A = x - ˙ y