Metamath Proof Explorer


Theorem ltgseg

Description: The set E denotes the possible values of the congruence. (Contributed by Thierry Arnoux, 15-Dec-2019)

Ref Expression
Hypotheses legval.p P=BaseG
legval.d -˙=distG
legval.i I=ItvG
legval.l ˙=𝒢G
legval.g φG𝒢Tarski
legso.a E=-˙P×P
legso.f φFun-˙
ltgseg.p φAE
Assertion ltgseg φxPyPA=x-˙y

Proof

Step Hyp Ref Expression
1 legval.p P=BaseG
2 legval.d -˙=distG
3 legval.i I=ItvG
4 legval.l ˙=𝒢G
5 legval.g φG𝒢Tarski
6 legso.a E=-˙P×P
7 legso.f φFun-˙
8 ltgseg.p φAE
9 simp-4r φaP×P-˙a=AxPyPa=xy-˙a=A
10 simpr φaP×P-˙a=AxPyPa=xya=xy
11 10 fveq2d φaP×P-˙a=AxPyPa=xy-˙a=-˙xy
12 9 11 eqtr3d φaP×P-˙a=AxPyPa=xyA=-˙xy
13 df-ov x-˙y=-˙xy
14 12 13 eqtr4di φaP×P-˙a=AxPyPa=xyA=x-˙y
15 simplr φaP×P-˙a=AaP×P
16 elxp2 aP×PxPyPa=xy
17 15 16 sylib φaP×P-˙a=AxPyPa=xy
18 14 17 reximddv2 φaP×P-˙a=AxPyPA=x-˙y
19 8 6 eleqtrdi φA-˙P×P
20 fvelima Fun-˙A-˙P×PaP×P-˙a=A
21 7 19 20 syl2anc φaP×P-˙a=A
22 18 21 r19.29a φxPyPA=x-˙y