Step |
Hyp |
Ref |
Expression |
1 |
|
legval.p |
|- P = ( Base ` G ) |
2 |
|
legval.d |
|- .- = ( dist ` G ) |
3 |
|
legval.i |
|- I = ( Itv ` G ) |
4 |
|
legval.l |
|- .<_ = ( leG ` G ) |
5 |
|
legval.g |
|- ( ph -> G e. TarskiG ) |
6 |
|
legso.a |
|- E = ( .- " ( P X. P ) ) |
7 |
|
legso.f |
|- ( ph -> Fun .- ) |
8 |
|
ltgseg.p |
|- ( ph -> A e. E ) |
9 |
|
simp-4r |
|- ( ( ( ( ( ( ph /\ a e. ( P X. P ) ) /\ ( .- ` a ) = A ) /\ x e. P ) /\ y e. P ) /\ a = <. x , y >. ) -> ( .- ` a ) = A ) |
10 |
|
simpr |
|- ( ( ( ( ( ( ph /\ a e. ( P X. P ) ) /\ ( .- ` a ) = A ) /\ x e. P ) /\ y e. P ) /\ a = <. x , y >. ) -> a = <. x , y >. ) |
11 |
10
|
fveq2d |
|- ( ( ( ( ( ( ph /\ a e. ( P X. P ) ) /\ ( .- ` a ) = A ) /\ x e. P ) /\ y e. P ) /\ a = <. x , y >. ) -> ( .- ` a ) = ( .- ` <. x , y >. ) ) |
12 |
9 11
|
eqtr3d |
|- ( ( ( ( ( ( ph /\ a e. ( P X. P ) ) /\ ( .- ` a ) = A ) /\ x e. P ) /\ y e. P ) /\ a = <. x , y >. ) -> A = ( .- ` <. x , y >. ) ) |
13 |
|
df-ov |
|- ( x .- y ) = ( .- ` <. x , y >. ) |
14 |
12 13
|
eqtr4di |
|- ( ( ( ( ( ( ph /\ a e. ( P X. P ) ) /\ ( .- ` a ) = A ) /\ x e. P ) /\ y e. P ) /\ a = <. x , y >. ) -> A = ( x .- y ) ) |
15 |
|
simplr |
|- ( ( ( ph /\ a e. ( P X. P ) ) /\ ( .- ` a ) = A ) -> a e. ( P X. P ) ) |
16 |
|
elxp2 |
|- ( a e. ( P X. P ) <-> E. x e. P E. y e. P a = <. x , y >. ) |
17 |
15 16
|
sylib |
|- ( ( ( ph /\ a e. ( P X. P ) ) /\ ( .- ` a ) = A ) -> E. x e. P E. y e. P a = <. x , y >. ) |
18 |
14 17
|
reximddv2 |
|- ( ( ( ph /\ a e. ( P X. P ) ) /\ ( .- ` a ) = A ) -> E. x e. P E. y e. P A = ( x .- y ) ) |
19 |
8 6
|
eleqtrdi |
|- ( ph -> A e. ( .- " ( P X. P ) ) ) |
20 |
|
fvelima |
|- ( ( Fun .- /\ A e. ( .- " ( P X. P ) ) ) -> E. a e. ( P X. P ) ( .- ` a ) = A ) |
21 |
7 19 20
|
syl2anc |
|- ( ph -> E. a e. ( P X. P ) ( .- ` a ) = A ) |
22 |
18 21
|
r19.29a |
|- ( ph -> E. x e. P E. y e. P A = ( x .- y ) ) |