| Step |
Hyp |
Ref |
Expression |
| 1 |
|
legval.p |
|- P = ( Base ` G ) |
| 2 |
|
legval.d |
|- .- = ( dist ` G ) |
| 3 |
|
legval.i |
|- I = ( Itv ` G ) |
| 4 |
|
legval.l |
|- .<_ = ( leG ` G ) |
| 5 |
|
legval.g |
|- ( ph -> G e. TarskiG ) |
| 6 |
|
legid.a |
|- ( ph -> A e. P ) |
| 7 |
|
legid.b |
|- ( ph -> B e. P ) |
| 8 |
|
legtrd.c |
|- ( ph -> C e. P ) |
| 9 |
|
legtrd.d |
|- ( ph -> D e. P ) |
| 10 |
|
tgcgrsub2.d |
|- ( ph -> D e. P ) |
| 11 |
|
tgcgrsub2.e |
|- ( ph -> E e. P ) |
| 12 |
|
tgcgrsub2.f |
|- ( ph -> F e. P ) |
| 13 |
|
tgcgrsub2.1 |
|- ( ph -> ( B e. ( A I C ) \/ C e. ( A I B ) ) ) |
| 14 |
|
tgcgrsub2.2 |
|- ( ph -> ( E e. ( D I F ) \/ F e. ( D I E ) ) ) |
| 15 |
|
tgcgrsub2.3 |
|- ( ph -> ( A .- B ) = ( D .- E ) ) |
| 16 |
|
tgcgrsub2.4 |
|- ( ph -> ( A .- C ) = ( D .- F ) ) |
| 17 |
5
|
adantr |
|- ( ( ph /\ B e. ( A I C ) ) -> G e. TarskiG ) |
| 18 |
8
|
adantr |
|- ( ( ph /\ B e. ( A I C ) ) -> C e. P ) |
| 19 |
7
|
adantr |
|- ( ( ph /\ B e. ( A I C ) ) -> B e. P ) |
| 20 |
12
|
adantr |
|- ( ( ph /\ B e. ( A I C ) ) -> F e. P ) |
| 21 |
11
|
adantr |
|- ( ( ph /\ B e. ( A I C ) ) -> E e. P ) |
| 22 |
6
|
adantr |
|- ( ( ph /\ B e. ( A I C ) ) -> A e. P ) |
| 23 |
9
|
adantr |
|- ( ( ph /\ B e. ( A I C ) ) -> D e. P ) |
| 24 |
|
simpr |
|- ( ( ph /\ B e. ( A I C ) ) -> B e. ( A I C ) ) |
| 25 |
1 2 3 17 22 19 18 24
|
tgbtwncom |
|- ( ( ph /\ B e. ( A I C ) ) -> B e. ( C I A ) ) |
| 26 |
14
|
adantr |
|- ( ( ph /\ B e. ( A I C ) ) -> ( E e. ( D I F ) \/ F e. ( D I E ) ) ) |
| 27 |
1 2 3 4 17 22 19 18 24
|
btwnleg |
|- ( ( ph /\ B e. ( A I C ) ) -> ( A .- B ) .<_ ( A .- C ) ) |
| 28 |
15
|
adantr |
|- ( ( ph /\ B e. ( A I C ) ) -> ( A .- B ) = ( D .- E ) ) |
| 29 |
16
|
adantr |
|- ( ( ph /\ B e. ( A I C ) ) -> ( A .- C ) = ( D .- F ) ) |
| 30 |
27 28 29
|
3brtr3d |
|- ( ( ph /\ B e. ( A I C ) ) -> ( D .- E ) .<_ ( D .- F ) ) |
| 31 |
1 2 3 4 17 21 20 23 23 26 30
|
legbtwn |
|- ( ( ph /\ B e. ( A I C ) ) -> E e. ( D I F ) ) |
| 32 |
1 2 3 17 23 21 20 31
|
tgbtwncom |
|- ( ( ph /\ B e. ( A I C ) ) -> E e. ( F I D ) ) |
| 33 |
1 2 3 5 6 8 9 12 16
|
tgcgrcomlr |
|- ( ph -> ( C .- A ) = ( F .- D ) ) |
| 34 |
33
|
adantr |
|- ( ( ph /\ B e. ( A I C ) ) -> ( C .- A ) = ( F .- D ) ) |
| 35 |
1 2 3 5 6 7 9 11 15
|
tgcgrcomlr |
|- ( ph -> ( B .- A ) = ( E .- D ) ) |
| 36 |
35
|
adantr |
|- ( ( ph /\ B e. ( A I C ) ) -> ( B .- A ) = ( E .- D ) ) |
| 37 |
1 2 3 17 18 19 22 20 21 23 25 32 34 36
|
tgcgrsub |
|- ( ( ph /\ B e. ( A I C ) ) -> ( C .- B ) = ( F .- E ) ) |
| 38 |
1 2 3 17 18 19 20 21 37
|
tgcgrcomlr |
|- ( ( ph /\ B e. ( A I C ) ) -> ( B .- C ) = ( E .- F ) ) |
| 39 |
5
|
adantr |
|- ( ( ph /\ C e. ( A I B ) ) -> G e. TarskiG ) |
| 40 |
7
|
adantr |
|- ( ( ph /\ C e. ( A I B ) ) -> B e. P ) |
| 41 |
8
|
adantr |
|- ( ( ph /\ C e. ( A I B ) ) -> C e. P ) |
| 42 |
6
|
adantr |
|- ( ( ph /\ C e. ( A I B ) ) -> A e. P ) |
| 43 |
11
|
adantr |
|- ( ( ph /\ C e. ( A I B ) ) -> E e. P ) |
| 44 |
12
|
adantr |
|- ( ( ph /\ C e. ( A I B ) ) -> F e. P ) |
| 45 |
9
|
adantr |
|- ( ( ph /\ C e. ( A I B ) ) -> D e. P ) |
| 46 |
|
simpr |
|- ( ( ph /\ C e. ( A I B ) ) -> C e. ( A I B ) ) |
| 47 |
1 2 3 39 42 41 40 46
|
tgbtwncom |
|- ( ( ph /\ C e. ( A I B ) ) -> C e. ( B I A ) ) |
| 48 |
14
|
orcomd |
|- ( ph -> ( F e. ( D I E ) \/ E e. ( D I F ) ) ) |
| 49 |
48
|
adantr |
|- ( ( ph /\ C e. ( A I B ) ) -> ( F e. ( D I E ) \/ E e. ( D I F ) ) ) |
| 50 |
1 2 3 4 39 42 41 40 46
|
btwnleg |
|- ( ( ph /\ C e. ( A I B ) ) -> ( A .- C ) .<_ ( A .- B ) ) |
| 51 |
16
|
adantr |
|- ( ( ph /\ C e. ( A I B ) ) -> ( A .- C ) = ( D .- F ) ) |
| 52 |
15
|
adantr |
|- ( ( ph /\ C e. ( A I B ) ) -> ( A .- B ) = ( D .- E ) ) |
| 53 |
50 51 52
|
3brtr3d |
|- ( ( ph /\ C e. ( A I B ) ) -> ( D .- F ) .<_ ( D .- E ) ) |
| 54 |
1 2 3 4 39 44 43 45 45 49 53
|
legbtwn |
|- ( ( ph /\ C e. ( A I B ) ) -> F e. ( D I E ) ) |
| 55 |
1 2 3 39 45 44 43 54
|
tgbtwncom |
|- ( ( ph /\ C e. ( A I B ) ) -> F e. ( E I D ) ) |
| 56 |
35
|
adantr |
|- ( ( ph /\ C e. ( A I B ) ) -> ( B .- A ) = ( E .- D ) ) |
| 57 |
33
|
adantr |
|- ( ( ph /\ C e. ( A I B ) ) -> ( C .- A ) = ( F .- D ) ) |
| 58 |
1 2 3 39 40 41 42 43 44 45 47 55 56 57
|
tgcgrsub |
|- ( ( ph /\ C e. ( A I B ) ) -> ( B .- C ) = ( E .- F ) ) |
| 59 |
38 58 13
|
mpjaodan |
|- ( ph -> ( B .- C ) = ( E .- F ) ) |