Step |
Hyp |
Ref |
Expression |
1 |
|
legval.p |
|- P = ( Base ` G ) |
2 |
|
legval.d |
|- .- = ( dist ` G ) |
3 |
|
legval.i |
|- I = ( Itv ` G ) |
4 |
|
legval.l |
|- .<_ = ( leG ` G ) |
5 |
|
legval.g |
|- ( ph -> G e. TarskiG ) |
6 |
|
legid.a |
|- ( ph -> A e. P ) |
7 |
|
legid.b |
|- ( ph -> B e. P ) |
8 |
|
legtrd.c |
|- ( ph -> C e. P ) |
9 |
|
legtrd.d |
|- ( ph -> D e. P ) |
10 |
|
tgcgrsub2.d |
|- ( ph -> D e. P ) |
11 |
|
tgcgrsub2.e |
|- ( ph -> E e. P ) |
12 |
|
tgcgrsub2.f |
|- ( ph -> F e. P ) |
13 |
|
tgcgrsub2.1 |
|- ( ph -> ( B e. ( A I C ) \/ C e. ( A I B ) ) ) |
14 |
|
tgcgrsub2.2 |
|- ( ph -> ( E e. ( D I F ) \/ F e. ( D I E ) ) ) |
15 |
|
tgcgrsub2.3 |
|- ( ph -> ( A .- B ) = ( D .- E ) ) |
16 |
|
tgcgrsub2.4 |
|- ( ph -> ( A .- C ) = ( D .- F ) ) |
17 |
5
|
adantr |
|- ( ( ph /\ B e. ( A I C ) ) -> G e. TarskiG ) |
18 |
8
|
adantr |
|- ( ( ph /\ B e. ( A I C ) ) -> C e. P ) |
19 |
7
|
adantr |
|- ( ( ph /\ B e. ( A I C ) ) -> B e. P ) |
20 |
12
|
adantr |
|- ( ( ph /\ B e. ( A I C ) ) -> F e. P ) |
21 |
11
|
adantr |
|- ( ( ph /\ B e. ( A I C ) ) -> E e. P ) |
22 |
6
|
adantr |
|- ( ( ph /\ B e. ( A I C ) ) -> A e. P ) |
23 |
9
|
adantr |
|- ( ( ph /\ B e. ( A I C ) ) -> D e. P ) |
24 |
|
simpr |
|- ( ( ph /\ B e. ( A I C ) ) -> B e. ( A I C ) ) |
25 |
1 2 3 17 22 19 18 24
|
tgbtwncom |
|- ( ( ph /\ B e. ( A I C ) ) -> B e. ( C I A ) ) |
26 |
14
|
adantr |
|- ( ( ph /\ B e. ( A I C ) ) -> ( E e. ( D I F ) \/ F e. ( D I E ) ) ) |
27 |
1 2 3 4 17 22 19 18 24
|
btwnleg |
|- ( ( ph /\ B e. ( A I C ) ) -> ( A .- B ) .<_ ( A .- C ) ) |
28 |
15
|
adantr |
|- ( ( ph /\ B e. ( A I C ) ) -> ( A .- B ) = ( D .- E ) ) |
29 |
16
|
adantr |
|- ( ( ph /\ B e. ( A I C ) ) -> ( A .- C ) = ( D .- F ) ) |
30 |
27 28 29
|
3brtr3d |
|- ( ( ph /\ B e. ( A I C ) ) -> ( D .- E ) .<_ ( D .- F ) ) |
31 |
1 2 3 4 17 21 20 23 23 26 30
|
legbtwn |
|- ( ( ph /\ B e. ( A I C ) ) -> E e. ( D I F ) ) |
32 |
1 2 3 17 23 21 20 31
|
tgbtwncom |
|- ( ( ph /\ B e. ( A I C ) ) -> E e. ( F I D ) ) |
33 |
1 2 3 5 6 8 9 12 16
|
tgcgrcomlr |
|- ( ph -> ( C .- A ) = ( F .- D ) ) |
34 |
33
|
adantr |
|- ( ( ph /\ B e. ( A I C ) ) -> ( C .- A ) = ( F .- D ) ) |
35 |
1 2 3 5 6 7 9 11 15
|
tgcgrcomlr |
|- ( ph -> ( B .- A ) = ( E .- D ) ) |
36 |
35
|
adantr |
|- ( ( ph /\ B e. ( A I C ) ) -> ( B .- A ) = ( E .- D ) ) |
37 |
1 2 3 17 18 19 22 20 21 23 25 32 34 36
|
tgcgrsub |
|- ( ( ph /\ B e. ( A I C ) ) -> ( C .- B ) = ( F .- E ) ) |
38 |
1 2 3 17 18 19 20 21 37
|
tgcgrcomlr |
|- ( ( ph /\ B e. ( A I C ) ) -> ( B .- C ) = ( E .- F ) ) |
39 |
5
|
adantr |
|- ( ( ph /\ C e. ( A I B ) ) -> G e. TarskiG ) |
40 |
7
|
adantr |
|- ( ( ph /\ C e. ( A I B ) ) -> B e. P ) |
41 |
8
|
adantr |
|- ( ( ph /\ C e. ( A I B ) ) -> C e. P ) |
42 |
6
|
adantr |
|- ( ( ph /\ C e. ( A I B ) ) -> A e. P ) |
43 |
11
|
adantr |
|- ( ( ph /\ C e. ( A I B ) ) -> E e. P ) |
44 |
12
|
adantr |
|- ( ( ph /\ C e. ( A I B ) ) -> F e. P ) |
45 |
9
|
adantr |
|- ( ( ph /\ C e. ( A I B ) ) -> D e. P ) |
46 |
|
simpr |
|- ( ( ph /\ C e. ( A I B ) ) -> C e. ( A I B ) ) |
47 |
1 2 3 39 42 41 40 46
|
tgbtwncom |
|- ( ( ph /\ C e. ( A I B ) ) -> C e. ( B I A ) ) |
48 |
14
|
orcomd |
|- ( ph -> ( F e. ( D I E ) \/ E e. ( D I F ) ) ) |
49 |
48
|
adantr |
|- ( ( ph /\ C e. ( A I B ) ) -> ( F e. ( D I E ) \/ E e. ( D I F ) ) ) |
50 |
1 2 3 4 39 42 41 40 46
|
btwnleg |
|- ( ( ph /\ C e. ( A I B ) ) -> ( A .- C ) .<_ ( A .- B ) ) |
51 |
16
|
adantr |
|- ( ( ph /\ C e. ( A I B ) ) -> ( A .- C ) = ( D .- F ) ) |
52 |
15
|
adantr |
|- ( ( ph /\ C e. ( A I B ) ) -> ( A .- B ) = ( D .- E ) ) |
53 |
50 51 52
|
3brtr3d |
|- ( ( ph /\ C e. ( A I B ) ) -> ( D .- F ) .<_ ( D .- E ) ) |
54 |
1 2 3 4 39 44 43 45 45 49 53
|
legbtwn |
|- ( ( ph /\ C e. ( A I B ) ) -> F e. ( D I E ) ) |
55 |
1 2 3 39 45 44 43 54
|
tgbtwncom |
|- ( ( ph /\ C e. ( A I B ) ) -> F e. ( E I D ) ) |
56 |
35
|
adantr |
|- ( ( ph /\ C e. ( A I B ) ) -> ( B .- A ) = ( E .- D ) ) |
57 |
33
|
adantr |
|- ( ( ph /\ C e. ( A I B ) ) -> ( C .- A ) = ( F .- D ) ) |
58 |
1 2 3 39 40 41 42 43 44 45 47 55 56 57
|
tgcgrsub |
|- ( ( ph /\ C e. ( A I B ) ) -> ( B .- C ) = ( E .- F ) ) |
59 |
38 58 13
|
mpjaodan |
|- ( ph -> ( B .- C ) = ( E .- F ) ) |