| Step |
Hyp |
Ref |
Expression |
| 1 |
|
legval.p |
|
| 2 |
|
legval.d |
|
| 3 |
|
legval.i |
|
| 4 |
|
legval.l |
|
| 5 |
|
legval.g |
|
| 6 |
|
legid.a |
|
| 7 |
|
legid.b |
|
| 8 |
|
legtrd.c |
|
| 9 |
|
legtrd.d |
|
| 10 |
|
tgcgrsub2.d |
|
| 11 |
|
tgcgrsub2.e |
|
| 12 |
|
tgcgrsub2.f |
|
| 13 |
|
tgcgrsub2.1 |
|
| 14 |
|
tgcgrsub2.2 |
|
| 15 |
|
tgcgrsub2.3 |
|
| 16 |
|
tgcgrsub2.4 |
|
| 17 |
5
|
adantr |
|
| 18 |
8
|
adantr |
|
| 19 |
7
|
adantr |
|
| 20 |
12
|
adantr |
|
| 21 |
11
|
adantr |
|
| 22 |
6
|
adantr |
|
| 23 |
9
|
adantr |
|
| 24 |
|
simpr |
|
| 25 |
1 2 3 17 22 19 18 24
|
tgbtwncom |
|
| 26 |
14
|
adantr |
|
| 27 |
1 2 3 4 17 22 19 18 24
|
btwnleg |
|
| 28 |
15
|
adantr |
|
| 29 |
16
|
adantr |
|
| 30 |
27 28 29
|
3brtr3d |
|
| 31 |
1 2 3 4 17 21 20 23 23 26 30
|
legbtwn |
|
| 32 |
1 2 3 17 23 21 20 31
|
tgbtwncom |
|
| 33 |
1 2 3 5 6 8 9 12 16
|
tgcgrcomlr |
|
| 34 |
33
|
adantr |
|
| 35 |
1 2 3 5 6 7 9 11 15
|
tgcgrcomlr |
|
| 36 |
35
|
adantr |
|
| 37 |
1 2 3 17 18 19 22 20 21 23 25 32 34 36
|
tgcgrsub |
|
| 38 |
1 2 3 17 18 19 20 21 37
|
tgcgrcomlr |
|
| 39 |
5
|
adantr |
|
| 40 |
7
|
adantr |
|
| 41 |
8
|
adantr |
|
| 42 |
6
|
adantr |
|
| 43 |
11
|
adantr |
|
| 44 |
12
|
adantr |
|
| 45 |
9
|
adantr |
|
| 46 |
|
simpr |
|
| 47 |
1 2 3 39 42 41 40 46
|
tgbtwncom |
|
| 48 |
14
|
orcomd |
|
| 49 |
48
|
adantr |
|
| 50 |
1 2 3 4 39 42 41 40 46
|
btwnleg |
|
| 51 |
16
|
adantr |
|
| 52 |
15
|
adantr |
|
| 53 |
50 51 52
|
3brtr3d |
|
| 54 |
1 2 3 4 39 44 43 45 45 49 53
|
legbtwn |
|
| 55 |
1 2 3 39 45 44 43 54
|
tgbtwncom |
|
| 56 |
35
|
adantr |
|
| 57 |
33
|
adantr |
|
| 58 |
1 2 3 39 40 41 42 43 44 45 47 55 56 57
|
tgcgrsub |
|
| 59 |
38 58 13
|
mpjaodan |
|