| Step |
Hyp |
Ref |
Expression |
| 1 |
|
legval.p |
|
| 2 |
|
legval.d |
|
| 3 |
|
legval.i |
|
| 4 |
|
legval.l |
|
| 5 |
|
legval.g |
|
| 6 |
|
legid.a |
|
| 7 |
|
legid.b |
|
| 8 |
|
legtrd.c |
|
| 9 |
|
legtrd.d |
|
| 10 |
|
legbtwn.1 |
|
| 11 |
|
legbtwn.2 |
|
| 12 |
|
simpr |
|
| 13 |
5
|
adantr |
|
| 14 |
6
|
adantr |
|
| 15 |
7
|
adantr |
|
| 16 |
8
|
adantr |
|
| 17 |
|
simpr |
|
| 18 |
1 2 3 13 16 15 14 17
|
tgbtwncom |
|
| 19 |
1 2 3 13 15 16
|
tgbtwntriv1 |
|
| 20 |
11
|
adantr |
|
| 21 |
1 2 3 4 13 16 15 14 17
|
btwnleg |
|
| 22 |
1 2 3 4 13 16 14 16 15 20 21
|
legtri3 |
|
| 23 |
1 2 3 13 16 14 16 15 22
|
tgcgrcomlr |
|
| 24 |
|
eqidd |
|
| 25 |
1 2 3 13 14 15 16 15 15 16 18 19 23 24
|
tgcgrsub |
|
| 26 |
1 2 3 13 14 15 15 25
|
axtgcgrid |
|
| 27 |
26 17
|
eqeltrd |
|
| 28 |
26
|
oveq2d |
|
| 29 |
27 28
|
eleqtrd |
|
| 30 |
12 29 10
|
mpjaodan |
|