Metamath Proof Explorer


Theorem btwnleg

Description: Betweenness implies less-than relation. (Contributed by Thierry Arnoux, 3-Jul-2019)

Ref Expression
Hypotheses legval.p P = Base G
legval.d - ˙ = dist G
legval.i I = Itv G
legval.l ˙ = 𝒢 G
legval.g φ G 𝒢 Tarski
legid.a φ A P
legid.b φ B P
legtrd.c φ C P
btwnleg.1 φ B A I C
Assertion btwnleg φ A - ˙ B ˙ A - ˙ C

Proof

Step Hyp Ref Expression
1 legval.p P = Base G
2 legval.d - ˙ = dist G
3 legval.i I = Itv G
4 legval.l ˙ = 𝒢 G
5 legval.g φ G 𝒢 Tarski
6 legid.a φ A P
7 legid.b φ B P
8 legtrd.c φ C P
9 btwnleg.1 φ B A I C
10 eqidd φ A - ˙ B = A - ˙ B
11 eleq1 x = B x A I C B A I C
12 oveq2 x = B A - ˙ x = A - ˙ B
13 12 eqeq2d x = B A - ˙ B = A - ˙ x A - ˙ B = A - ˙ B
14 11 13 anbi12d x = B x A I C A - ˙ B = A - ˙ x B A I C A - ˙ B = A - ˙ B
15 14 rspcev B P B A I C A - ˙ B = A - ˙ B x P x A I C A - ˙ B = A - ˙ x
16 7 9 10 15 syl12anc φ x P x A I C A - ˙ B = A - ˙ x
17 1 2 3 4 5 6 7 6 8 legov φ A - ˙ B ˙ A - ˙ C x P x A I C A - ˙ B = A - ˙ x
18 16 17 mpbird φ A - ˙ B ˙ A - ˙ C