Metamath Proof Explorer
Description: Deduce equality from "less than" null segments. (Contributed by Thierry Arnoux, 12-Aug-2019)
|
|
Ref |
Expression |
|
Hypotheses |
legval.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
|
|
legval.d |
⊢ − = ( dist ‘ 𝐺 ) |
|
|
legval.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
|
|
legval.l |
⊢ ≤ = ( ≤G ‘ 𝐺 ) |
|
|
legval.g |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
|
|
legid.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑃 ) |
|
|
legid.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑃 ) |
|
|
legtrd.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝑃 ) |
|
|
legtrd.d |
⊢ ( 𝜑 → 𝐷 ∈ 𝑃 ) |
|
|
legeq.1 |
⊢ ( 𝜑 → ( 𝐴 − 𝐵 ) ≤ ( 𝐶 − 𝐶 ) ) |
|
Assertion |
legeq |
⊢ ( 𝜑 → 𝐴 = 𝐵 ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
legval.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
| 2 |
|
legval.d |
⊢ − = ( dist ‘ 𝐺 ) |
| 3 |
|
legval.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
| 4 |
|
legval.l |
⊢ ≤ = ( ≤G ‘ 𝐺 ) |
| 5 |
|
legval.g |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
| 6 |
|
legid.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑃 ) |
| 7 |
|
legid.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑃 ) |
| 8 |
|
legtrd.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝑃 ) |
| 9 |
|
legtrd.d |
⊢ ( 𝜑 → 𝐷 ∈ 𝑃 ) |
| 10 |
|
legeq.1 |
⊢ ( 𝜑 → ( 𝐴 − 𝐵 ) ≤ ( 𝐶 − 𝐶 ) ) |
| 11 |
1 2 3 4 5 8 6 6 7
|
leg0 |
⊢ ( 𝜑 → ( 𝐶 − 𝐶 ) ≤ ( 𝐴 − 𝐵 ) ) |
| 12 |
1 2 3 4 5 6 7 8 8 10 11
|
legtri3 |
⊢ ( 𝜑 → ( 𝐴 − 𝐵 ) = ( 𝐶 − 𝐶 ) ) |
| 13 |
1 2 3 5 6 7 8 12
|
axtgcgrid |
⊢ ( 𝜑 → 𝐴 = 𝐵 ) |