| Step |
Hyp |
Ref |
Expression |
| 1 |
|
legval.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
| 2 |
|
legval.d |
⊢ − = ( dist ‘ 𝐺 ) |
| 3 |
|
legval.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
| 4 |
|
legval.l |
⊢ ≤ = ( ≤G ‘ 𝐺 ) |
| 5 |
|
legval.g |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
| 6 |
|
legid.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑃 ) |
| 7 |
|
legid.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑃 ) |
| 8 |
|
legtrd.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝑃 ) |
| 9 |
|
legtrd.d |
⊢ ( 𝜑 → 𝐷 ∈ 𝑃 ) |
| 10 |
1 2 3 5 8 9
|
tgbtwntriv1 |
⊢ ( 𝜑 → 𝐶 ∈ ( 𝐶 𝐼 𝐷 ) ) |
| 11 |
1 2 3 5 6 8
|
tgcgrtriv |
⊢ ( 𝜑 → ( 𝐴 − 𝐴 ) = ( 𝐶 − 𝐶 ) ) |
| 12 |
|
eleq1 |
⊢ ( 𝑥 = 𝐶 → ( 𝑥 ∈ ( 𝐶 𝐼 𝐷 ) ↔ 𝐶 ∈ ( 𝐶 𝐼 𝐷 ) ) ) |
| 13 |
|
oveq2 |
⊢ ( 𝑥 = 𝐶 → ( 𝐶 − 𝑥 ) = ( 𝐶 − 𝐶 ) ) |
| 14 |
13
|
eqeq2d |
⊢ ( 𝑥 = 𝐶 → ( ( 𝐴 − 𝐴 ) = ( 𝐶 − 𝑥 ) ↔ ( 𝐴 − 𝐴 ) = ( 𝐶 − 𝐶 ) ) ) |
| 15 |
12 14
|
anbi12d |
⊢ ( 𝑥 = 𝐶 → ( ( 𝑥 ∈ ( 𝐶 𝐼 𝐷 ) ∧ ( 𝐴 − 𝐴 ) = ( 𝐶 − 𝑥 ) ) ↔ ( 𝐶 ∈ ( 𝐶 𝐼 𝐷 ) ∧ ( 𝐴 − 𝐴 ) = ( 𝐶 − 𝐶 ) ) ) ) |
| 16 |
15
|
rspcev |
⊢ ( ( 𝐶 ∈ 𝑃 ∧ ( 𝐶 ∈ ( 𝐶 𝐼 𝐷 ) ∧ ( 𝐴 − 𝐴 ) = ( 𝐶 − 𝐶 ) ) ) → ∃ 𝑥 ∈ 𝑃 ( 𝑥 ∈ ( 𝐶 𝐼 𝐷 ) ∧ ( 𝐴 − 𝐴 ) = ( 𝐶 − 𝑥 ) ) ) |
| 17 |
8 10 11 16
|
syl12anc |
⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝑃 ( 𝑥 ∈ ( 𝐶 𝐼 𝐷 ) ∧ ( 𝐴 − 𝐴 ) = ( 𝐶 − 𝑥 ) ) ) |
| 18 |
1 2 3 4 5 6 6 8 9
|
legov |
⊢ ( 𝜑 → ( ( 𝐴 − 𝐴 ) ≤ ( 𝐶 − 𝐷 ) ↔ ∃ 𝑥 ∈ 𝑃 ( 𝑥 ∈ ( 𝐶 𝐼 𝐷 ) ∧ ( 𝐴 − 𝐴 ) = ( 𝐶 − 𝑥 ) ) ) ) |
| 19 |
17 18
|
mpbird |
⊢ ( 𝜑 → ( 𝐴 − 𝐴 ) ≤ ( 𝐶 − 𝐷 ) ) |