| Step | Hyp | Ref | Expression | 
						
							| 1 |  | legval.p |  |-  P = ( Base ` G ) | 
						
							| 2 |  | legval.d |  |-  .- = ( dist ` G ) | 
						
							| 3 |  | legval.i |  |-  I = ( Itv ` G ) | 
						
							| 4 |  | legval.l |  |-  .<_ = ( leG ` G ) | 
						
							| 5 |  | legval.g |  |-  ( ph -> G e. TarskiG ) | 
						
							| 6 |  | legid.a |  |-  ( ph -> A e. P ) | 
						
							| 7 |  | legid.b |  |-  ( ph -> B e. P ) | 
						
							| 8 |  | legtrd.c |  |-  ( ph -> C e. P ) | 
						
							| 9 |  | legtrd.d |  |-  ( ph -> D e. P ) | 
						
							| 10 | 1 2 3 5 8 9 | tgbtwntriv1 |  |-  ( ph -> C e. ( C I D ) ) | 
						
							| 11 | 1 2 3 5 6 8 | tgcgrtriv |  |-  ( ph -> ( A .- A ) = ( C .- C ) ) | 
						
							| 12 |  | eleq1 |  |-  ( x = C -> ( x e. ( C I D ) <-> C e. ( C I D ) ) ) | 
						
							| 13 |  | oveq2 |  |-  ( x = C -> ( C .- x ) = ( C .- C ) ) | 
						
							| 14 | 13 | eqeq2d |  |-  ( x = C -> ( ( A .- A ) = ( C .- x ) <-> ( A .- A ) = ( C .- C ) ) ) | 
						
							| 15 | 12 14 | anbi12d |  |-  ( x = C -> ( ( x e. ( C I D ) /\ ( A .- A ) = ( C .- x ) ) <-> ( C e. ( C I D ) /\ ( A .- A ) = ( C .- C ) ) ) ) | 
						
							| 16 | 15 | rspcev |  |-  ( ( C e. P /\ ( C e. ( C I D ) /\ ( A .- A ) = ( C .- C ) ) ) -> E. x e. P ( x e. ( C I D ) /\ ( A .- A ) = ( C .- x ) ) ) | 
						
							| 17 | 8 10 11 16 | syl12anc |  |-  ( ph -> E. x e. P ( x e. ( C I D ) /\ ( A .- A ) = ( C .- x ) ) ) | 
						
							| 18 | 1 2 3 4 5 6 6 8 9 | legov |  |-  ( ph -> ( ( A .- A ) .<_ ( C .- D ) <-> E. x e. P ( x e. ( C I D ) /\ ( A .- A ) = ( C .- x ) ) ) ) | 
						
							| 19 | 17 18 | mpbird |  |-  ( ph -> ( A .- A ) .<_ ( C .- D ) ) |