Metamath Proof Explorer


Theorem leg0

Description: Degenerated (zero-length) segments are minimal. Proposition 5.11 of Schwabhauser p. 42. (Contributed by Thierry Arnoux, 27-Jun-2019)

Ref Expression
Hypotheses legval.p
|- P = ( Base ` G )
legval.d
|- .- = ( dist ` G )
legval.i
|- I = ( Itv ` G )
legval.l
|- .<_ = ( leG ` G )
legval.g
|- ( ph -> G e. TarskiG )
legid.a
|- ( ph -> A e. P )
legid.b
|- ( ph -> B e. P )
legtrd.c
|- ( ph -> C e. P )
legtrd.d
|- ( ph -> D e. P )
Assertion leg0
|- ( ph -> ( A .- A ) .<_ ( C .- D ) )

Proof

Step Hyp Ref Expression
1 legval.p
 |-  P = ( Base ` G )
2 legval.d
 |-  .- = ( dist ` G )
3 legval.i
 |-  I = ( Itv ` G )
4 legval.l
 |-  .<_ = ( leG ` G )
5 legval.g
 |-  ( ph -> G e. TarskiG )
6 legid.a
 |-  ( ph -> A e. P )
7 legid.b
 |-  ( ph -> B e. P )
8 legtrd.c
 |-  ( ph -> C e. P )
9 legtrd.d
 |-  ( ph -> D e. P )
10 1 2 3 5 8 9 tgbtwntriv1
 |-  ( ph -> C e. ( C I D ) )
11 1 2 3 5 6 8 tgcgrtriv
 |-  ( ph -> ( A .- A ) = ( C .- C ) )
12 eleq1
 |-  ( x = C -> ( x e. ( C I D ) <-> C e. ( C I D ) ) )
13 oveq2
 |-  ( x = C -> ( C .- x ) = ( C .- C ) )
14 13 eqeq2d
 |-  ( x = C -> ( ( A .- A ) = ( C .- x ) <-> ( A .- A ) = ( C .- C ) ) )
15 12 14 anbi12d
 |-  ( x = C -> ( ( x e. ( C I D ) /\ ( A .- A ) = ( C .- x ) ) <-> ( C e. ( C I D ) /\ ( A .- A ) = ( C .- C ) ) ) )
16 15 rspcev
 |-  ( ( C e. P /\ ( C e. ( C I D ) /\ ( A .- A ) = ( C .- C ) ) ) -> E. x e. P ( x e. ( C I D ) /\ ( A .- A ) = ( C .- x ) ) )
17 8 10 11 16 syl12anc
 |-  ( ph -> E. x e. P ( x e. ( C I D ) /\ ( A .- A ) = ( C .- x ) ) )
18 1 2 3 4 5 6 6 8 9 legov
 |-  ( ph -> ( ( A .- A ) .<_ ( C .- D ) <-> E. x e. P ( x e. ( C I D ) /\ ( A .- A ) = ( C .- x ) ) ) )
19 17 18 mpbird
 |-  ( ph -> ( A .- A ) .<_ ( C .- D ) )