Step |
Hyp |
Ref |
Expression |
1 |
|
legval.p |
|- P = ( Base ` G ) |
2 |
|
legval.d |
|- .- = ( dist ` G ) |
3 |
|
legval.i |
|- I = ( Itv ` G ) |
4 |
|
legval.l |
|- .<_ = ( leG ` G ) |
5 |
|
legval.g |
|- ( ph -> G e. TarskiG ) |
6 |
|
legid.a |
|- ( ph -> A e. P ) |
7 |
|
legid.b |
|- ( ph -> B e. P ) |
8 |
|
legtrd.c |
|- ( ph -> C e. P ) |
9 |
|
legtrd.d |
|- ( ph -> D e. P ) |
10 |
1 2 3 5 8 9
|
tgbtwntriv1 |
|- ( ph -> C e. ( C I D ) ) |
11 |
1 2 3 5 6 8
|
tgcgrtriv |
|- ( ph -> ( A .- A ) = ( C .- C ) ) |
12 |
|
eleq1 |
|- ( x = C -> ( x e. ( C I D ) <-> C e. ( C I D ) ) ) |
13 |
|
oveq2 |
|- ( x = C -> ( C .- x ) = ( C .- C ) ) |
14 |
13
|
eqeq2d |
|- ( x = C -> ( ( A .- A ) = ( C .- x ) <-> ( A .- A ) = ( C .- C ) ) ) |
15 |
12 14
|
anbi12d |
|- ( x = C -> ( ( x e. ( C I D ) /\ ( A .- A ) = ( C .- x ) ) <-> ( C e. ( C I D ) /\ ( A .- A ) = ( C .- C ) ) ) ) |
16 |
15
|
rspcev |
|- ( ( C e. P /\ ( C e. ( C I D ) /\ ( A .- A ) = ( C .- C ) ) ) -> E. x e. P ( x e. ( C I D ) /\ ( A .- A ) = ( C .- x ) ) ) |
17 |
8 10 11 16
|
syl12anc |
|- ( ph -> E. x e. P ( x e. ( C I D ) /\ ( A .- A ) = ( C .- x ) ) ) |
18 |
1 2 3 4 5 6 6 8 9
|
legov |
|- ( ph -> ( ( A .- A ) .<_ ( C .- D ) <-> E. x e. P ( x e. ( C I D ) /\ ( A .- A ) = ( C .- x ) ) ) ) |
19 |
17 18
|
mpbird |
|- ( ph -> ( A .- A ) .<_ ( C .- D ) ) |