Metamath Proof Explorer


Theorem mideu

Description: Existence and uniqueness of the midpoint, Theorem 8.22 of Schwabhauser p. 64. (Contributed by Thierry Arnoux, 25-Nov-2019)

Ref Expression
Hypotheses colperpex.p
|- P = ( Base ` G )
colperpex.d
|- .- = ( dist ` G )
colperpex.i
|- I = ( Itv ` G )
colperpex.l
|- L = ( LineG ` G )
colperpex.g
|- ( ph -> G e. TarskiG )
mideu.s
|- S = ( pInvG ` G )
mideu.1
|- ( ph -> A e. P )
mideu.2
|- ( ph -> B e. P )
mideu.3
|- ( ph -> G TarskiGDim>= 2 )
Assertion mideu
|- ( ph -> E! x e. P B = ( ( S ` x ) ` A ) )

Proof

Step Hyp Ref Expression
1 colperpex.p
 |-  P = ( Base ` G )
2 colperpex.d
 |-  .- = ( dist ` G )
3 colperpex.i
 |-  I = ( Itv ` G )
4 colperpex.l
 |-  L = ( LineG ` G )
5 colperpex.g
 |-  ( ph -> G e. TarskiG )
6 mideu.s
 |-  S = ( pInvG ` G )
7 mideu.1
 |-  ( ph -> A e. P )
8 mideu.2
 |-  ( ph -> B e. P )
9 mideu.3
 |-  ( ph -> G TarskiGDim>= 2 )
10 1 2 3 4 5 6 7 8 9 midex
 |-  ( ph -> E. x e. P B = ( ( S ` x ) ` A ) )
11 5 ad2antrr
 |-  ( ( ( ph /\ ( x e. P /\ y e. P ) ) /\ ( B = ( ( S ` x ) ` A ) /\ B = ( ( S ` y ) ` A ) ) ) -> G e. TarskiG )
12 simplrl
 |-  ( ( ( ph /\ ( x e. P /\ y e. P ) ) /\ ( B = ( ( S ` x ) ` A ) /\ B = ( ( S ` y ) ` A ) ) ) -> x e. P )
13 simplrr
 |-  ( ( ( ph /\ ( x e. P /\ y e. P ) ) /\ ( B = ( ( S ` x ) ` A ) /\ B = ( ( S ` y ) ` A ) ) ) -> y e. P )
14 7 ad2antrr
 |-  ( ( ( ph /\ ( x e. P /\ y e. P ) ) /\ ( B = ( ( S ` x ) ` A ) /\ B = ( ( S ` y ) ` A ) ) ) -> A e. P )
15 8 ad2antrr
 |-  ( ( ( ph /\ ( x e. P /\ y e. P ) ) /\ ( B = ( ( S ` x ) ` A ) /\ B = ( ( S ` y ) ` A ) ) ) -> B e. P )
16 simprl
 |-  ( ( ( ph /\ ( x e. P /\ y e. P ) ) /\ ( B = ( ( S ` x ) ` A ) /\ B = ( ( S ` y ) ` A ) ) ) -> B = ( ( S ` x ) ` A ) )
17 16 eqcomd
 |-  ( ( ( ph /\ ( x e. P /\ y e. P ) ) /\ ( B = ( ( S ` x ) ` A ) /\ B = ( ( S ` y ) ` A ) ) ) -> ( ( S ` x ) ` A ) = B )
18 simprr
 |-  ( ( ( ph /\ ( x e. P /\ y e. P ) ) /\ ( B = ( ( S ` x ) ` A ) /\ B = ( ( S ` y ) ` A ) ) ) -> B = ( ( S ` y ) ` A ) )
19 18 eqcomd
 |-  ( ( ( ph /\ ( x e. P /\ y e. P ) ) /\ ( B = ( ( S ` x ) ` A ) /\ B = ( ( S ` y ) ` A ) ) ) -> ( ( S ` y ) ` A ) = B )
20 1 2 3 4 6 11 12 13 14 15 17 19 miduniq
 |-  ( ( ( ph /\ ( x e. P /\ y e. P ) ) /\ ( B = ( ( S ` x ) ` A ) /\ B = ( ( S ` y ) ` A ) ) ) -> x = y )
21 20 ex
 |-  ( ( ph /\ ( x e. P /\ y e. P ) ) -> ( ( B = ( ( S ` x ) ` A ) /\ B = ( ( S ` y ) ` A ) ) -> x = y ) )
22 21 ralrimivva
 |-  ( ph -> A. x e. P A. y e. P ( ( B = ( ( S ` x ) ` A ) /\ B = ( ( S ` y ) ` A ) ) -> x = y ) )
23 fveq2
 |-  ( x = y -> ( S ` x ) = ( S ` y ) )
24 23 fveq1d
 |-  ( x = y -> ( ( S ` x ) ` A ) = ( ( S ` y ) ` A ) )
25 24 eqeq2d
 |-  ( x = y -> ( B = ( ( S ` x ) ` A ) <-> B = ( ( S ` y ) ` A ) ) )
26 25 rmo4
 |-  ( E* x e. P B = ( ( S ` x ) ` A ) <-> A. x e. P A. y e. P ( ( B = ( ( S ` x ) ` A ) /\ B = ( ( S ` y ) ` A ) ) -> x = y ) )
27 22 26 sylibr
 |-  ( ph -> E* x e. P B = ( ( S ` x ) ` A ) )
28 reu5
 |-  ( E! x e. P B = ( ( S ` x ) ` A ) <-> ( E. x e. P B = ( ( S ` x ) ` A ) /\ E* x e. P B = ( ( S ` x ) ` A ) ) )
29 10 27 28 sylanbrc
 |-  ( ph -> E! x e. P B = ( ( S ` x ) ` A ) )