| Step |
Hyp |
Ref |
Expression |
| 1 |
|
colperpex.p |
|- P = ( Base ` G ) |
| 2 |
|
colperpex.d |
|- .- = ( dist ` G ) |
| 3 |
|
colperpex.i |
|- I = ( Itv ` G ) |
| 4 |
|
colperpex.l |
|- L = ( LineG ` G ) |
| 5 |
|
colperpex.g |
|- ( ph -> G e. TarskiG ) |
| 6 |
|
mideu.s |
|- S = ( pInvG ` G ) |
| 7 |
|
mideu.1 |
|- ( ph -> A e. P ) |
| 8 |
|
mideu.2 |
|- ( ph -> B e. P ) |
| 9 |
|
mideu.3 |
|- ( ph -> G TarskiGDim>= 2 ) |
| 10 |
1 2 3 4 5 6 7 8 9
|
midex |
|- ( ph -> E. x e. P B = ( ( S ` x ) ` A ) ) |
| 11 |
5
|
ad2antrr |
|- ( ( ( ph /\ ( x e. P /\ y e. P ) ) /\ ( B = ( ( S ` x ) ` A ) /\ B = ( ( S ` y ) ` A ) ) ) -> G e. TarskiG ) |
| 12 |
|
simplrl |
|- ( ( ( ph /\ ( x e. P /\ y e. P ) ) /\ ( B = ( ( S ` x ) ` A ) /\ B = ( ( S ` y ) ` A ) ) ) -> x e. P ) |
| 13 |
|
simplrr |
|- ( ( ( ph /\ ( x e. P /\ y e. P ) ) /\ ( B = ( ( S ` x ) ` A ) /\ B = ( ( S ` y ) ` A ) ) ) -> y e. P ) |
| 14 |
7
|
ad2antrr |
|- ( ( ( ph /\ ( x e. P /\ y e. P ) ) /\ ( B = ( ( S ` x ) ` A ) /\ B = ( ( S ` y ) ` A ) ) ) -> A e. P ) |
| 15 |
8
|
ad2antrr |
|- ( ( ( ph /\ ( x e. P /\ y e. P ) ) /\ ( B = ( ( S ` x ) ` A ) /\ B = ( ( S ` y ) ` A ) ) ) -> B e. P ) |
| 16 |
|
simprl |
|- ( ( ( ph /\ ( x e. P /\ y e. P ) ) /\ ( B = ( ( S ` x ) ` A ) /\ B = ( ( S ` y ) ` A ) ) ) -> B = ( ( S ` x ) ` A ) ) |
| 17 |
16
|
eqcomd |
|- ( ( ( ph /\ ( x e. P /\ y e. P ) ) /\ ( B = ( ( S ` x ) ` A ) /\ B = ( ( S ` y ) ` A ) ) ) -> ( ( S ` x ) ` A ) = B ) |
| 18 |
|
simprr |
|- ( ( ( ph /\ ( x e. P /\ y e. P ) ) /\ ( B = ( ( S ` x ) ` A ) /\ B = ( ( S ` y ) ` A ) ) ) -> B = ( ( S ` y ) ` A ) ) |
| 19 |
18
|
eqcomd |
|- ( ( ( ph /\ ( x e. P /\ y e. P ) ) /\ ( B = ( ( S ` x ) ` A ) /\ B = ( ( S ` y ) ` A ) ) ) -> ( ( S ` y ) ` A ) = B ) |
| 20 |
1 2 3 4 6 11 12 13 14 15 17 19
|
miduniq |
|- ( ( ( ph /\ ( x e. P /\ y e. P ) ) /\ ( B = ( ( S ` x ) ` A ) /\ B = ( ( S ` y ) ` A ) ) ) -> x = y ) |
| 21 |
20
|
ex |
|- ( ( ph /\ ( x e. P /\ y e. P ) ) -> ( ( B = ( ( S ` x ) ` A ) /\ B = ( ( S ` y ) ` A ) ) -> x = y ) ) |
| 22 |
21
|
ralrimivva |
|- ( ph -> A. x e. P A. y e. P ( ( B = ( ( S ` x ) ` A ) /\ B = ( ( S ` y ) ` A ) ) -> x = y ) ) |
| 23 |
|
fveq2 |
|- ( x = y -> ( S ` x ) = ( S ` y ) ) |
| 24 |
23
|
fveq1d |
|- ( x = y -> ( ( S ` x ) ` A ) = ( ( S ` y ) ` A ) ) |
| 25 |
24
|
eqeq2d |
|- ( x = y -> ( B = ( ( S ` x ) ` A ) <-> B = ( ( S ` y ) ` A ) ) ) |
| 26 |
25
|
rmo4 |
|- ( E* x e. P B = ( ( S ` x ) ` A ) <-> A. x e. P A. y e. P ( ( B = ( ( S ` x ) ` A ) /\ B = ( ( S ` y ) ` A ) ) -> x = y ) ) |
| 27 |
22 26
|
sylibr |
|- ( ph -> E* x e. P B = ( ( S ` x ) ` A ) ) |
| 28 |
|
reu5 |
|- ( E! x e. P B = ( ( S ` x ) ` A ) <-> ( E. x e. P B = ( ( S ` x ) ` A ) /\ E* x e. P B = ( ( S ` x ) ` A ) ) ) |
| 29 |
10 27 28
|
sylanbrc |
|- ( ph -> E! x e. P B = ( ( S ` x ) ` A ) ) |