Step |
Hyp |
Ref |
Expression |
1 |
|
colperpex.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
2 |
|
colperpex.d |
⊢ − = ( dist ‘ 𝐺 ) |
3 |
|
colperpex.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
4 |
|
colperpex.l |
⊢ 𝐿 = ( LineG ‘ 𝐺 ) |
5 |
|
colperpex.g |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
6 |
|
mideu.s |
⊢ 𝑆 = ( pInvG ‘ 𝐺 ) |
7 |
|
mideu.1 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑃 ) |
8 |
|
mideu.2 |
⊢ ( 𝜑 → 𝐵 ∈ 𝑃 ) |
9 |
|
mideu.3 |
⊢ ( 𝜑 → 𝐺 DimTarskiG≥ 2 ) |
10 |
1 2 3 4 5 6 7 8 9
|
midex |
⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝑃 𝐵 = ( ( 𝑆 ‘ 𝑥 ) ‘ 𝐴 ) ) |
11 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃 ) ) ∧ ( 𝐵 = ( ( 𝑆 ‘ 𝑥 ) ‘ 𝐴 ) ∧ 𝐵 = ( ( 𝑆 ‘ 𝑦 ) ‘ 𝐴 ) ) ) → 𝐺 ∈ TarskiG ) |
12 |
|
simplrl |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃 ) ) ∧ ( 𝐵 = ( ( 𝑆 ‘ 𝑥 ) ‘ 𝐴 ) ∧ 𝐵 = ( ( 𝑆 ‘ 𝑦 ) ‘ 𝐴 ) ) ) → 𝑥 ∈ 𝑃 ) |
13 |
|
simplrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃 ) ) ∧ ( 𝐵 = ( ( 𝑆 ‘ 𝑥 ) ‘ 𝐴 ) ∧ 𝐵 = ( ( 𝑆 ‘ 𝑦 ) ‘ 𝐴 ) ) ) → 𝑦 ∈ 𝑃 ) |
14 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃 ) ) ∧ ( 𝐵 = ( ( 𝑆 ‘ 𝑥 ) ‘ 𝐴 ) ∧ 𝐵 = ( ( 𝑆 ‘ 𝑦 ) ‘ 𝐴 ) ) ) → 𝐴 ∈ 𝑃 ) |
15 |
8
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃 ) ) ∧ ( 𝐵 = ( ( 𝑆 ‘ 𝑥 ) ‘ 𝐴 ) ∧ 𝐵 = ( ( 𝑆 ‘ 𝑦 ) ‘ 𝐴 ) ) ) → 𝐵 ∈ 𝑃 ) |
16 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃 ) ) ∧ ( 𝐵 = ( ( 𝑆 ‘ 𝑥 ) ‘ 𝐴 ) ∧ 𝐵 = ( ( 𝑆 ‘ 𝑦 ) ‘ 𝐴 ) ) ) → 𝐵 = ( ( 𝑆 ‘ 𝑥 ) ‘ 𝐴 ) ) |
17 |
16
|
eqcomd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃 ) ) ∧ ( 𝐵 = ( ( 𝑆 ‘ 𝑥 ) ‘ 𝐴 ) ∧ 𝐵 = ( ( 𝑆 ‘ 𝑦 ) ‘ 𝐴 ) ) ) → ( ( 𝑆 ‘ 𝑥 ) ‘ 𝐴 ) = 𝐵 ) |
18 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃 ) ) ∧ ( 𝐵 = ( ( 𝑆 ‘ 𝑥 ) ‘ 𝐴 ) ∧ 𝐵 = ( ( 𝑆 ‘ 𝑦 ) ‘ 𝐴 ) ) ) → 𝐵 = ( ( 𝑆 ‘ 𝑦 ) ‘ 𝐴 ) ) |
19 |
18
|
eqcomd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃 ) ) ∧ ( 𝐵 = ( ( 𝑆 ‘ 𝑥 ) ‘ 𝐴 ) ∧ 𝐵 = ( ( 𝑆 ‘ 𝑦 ) ‘ 𝐴 ) ) ) → ( ( 𝑆 ‘ 𝑦 ) ‘ 𝐴 ) = 𝐵 ) |
20 |
1 2 3 4 6 11 12 13 14 15 17 19
|
miduniq |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃 ) ) ∧ ( 𝐵 = ( ( 𝑆 ‘ 𝑥 ) ‘ 𝐴 ) ∧ 𝐵 = ( ( 𝑆 ‘ 𝑦 ) ‘ 𝐴 ) ) ) → 𝑥 = 𝑦 ) |
21 |
20
|
ex |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃 ) ) → ( ( 𝐵 = ( ( 𝑆 ‘ 𝑥 ) ‘ 𝐴 ) ∧ 𝐵 = ( ( 𝑆 ‘ 𝑦 ) ‘ 𝐴 ) ) → 𝑥 = 𝑦 ) ) |
22 |
21
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑃 ∀ 𝑦 ∈ 𝑃 ( ( 𝐵 = ( ( 𝑆 ‘ 𝑥 ) ‘ 𝐴 ) ∧ 𝐵 = ( ( 𝑆 ‘ 𝑦 ) ‘ 𝐴 ) ) → 𝑥 = 𝑦 ) ) |
23 |
|
fveq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝑆 ‘ 𝑥 ) = ( 𝑆 ‘ 𝑦 ) ) |
24 |
23
|
fveq1d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑆 ‘ 𝑥 ) ‘ 𝐴 ) = ( ( 𝑆 ‘ 𝑦 ) ‘ 𝐴 ) ) |
25 |
24
|
eqeq2d |
⊢ ( 𝑥 = 𝑦 → ( 𝐵 = ( ( 𝑆 ‘ 𝑥 ) ‘ 𝐴 ) ↔ 𝐵 = ( ( 𝑆 ‘ 𝑦 ) ‘ 𝐴 ) ) ) |
26 |
25
|
rmo4 |
⊢ ( ∃* 𝑥 ∈ 𝑃 𝐵 = ( ( 𝑆 ‘ 𝑥 ) ‘ 𝐴 ) ↔ ∀ 𝑥 ∈ 𝑃 ∀ 𝑦 ∈ 𝑃 ( ( 𝐵 = ( ( 𝑆 ‘ 𝑥 ) ‘ 𝐴 ) ∧ 𝐵 = ( ( 𝑆 ‘ 𝑦 ) ‘ 𝐴 ) ) → 𝑥 = 𝑦 ) ) |
27 |
22 26
|
sylibr |
⊢ ( 𝜑 → ∃* 𝑥 ∈ 𝑃 𝐵 = ( ( 𝑆 ‘ 𝑥 ) ‘ 𝐴 ) ) |
28 |
|
reu5 |
⊢ ( ∃! 𝑥 ∈ 𝑃 𝐵 = ( ( 𝑆 ‘ 𝑥 ) ‘ 𝐴 ) ↔ ( ∃ 𝑥 ∈ 𝑃 𝐵 = ( ( 𝑆 ‘ 𝑥 ) ‘ 𝐴 ) ∧ ∃* 𝑥 ∈ 𝑃 𝐵 = ( ( 𝑆 ‘ 𝑥 ) ‘ 𝐴 ) ) ) |
29 |
10 27 28
|
sylanbrc |
⊢ ( 𝜑 → ∃! 𝑥 ∈ 𝑃 𝐵 = ( ( 𝑆 ‘ 𝑥 ) ‘ 𝐴 ) ) |