Metamath Proof Explorer


Theorem mideu

Description: Existence and uniqueness of the midpoint, Theorem 8.22 of Schwabhauser p. 64. (Contributed by Thierry Arnoux, 25-Nov-2019)

Ref Expression
Hypotheses colperpex.p P=BaseG
colperpex.d -˙=distG
colperpex.i I=ItvG
colperpex.l L=Line𝒢G
colperpex.g φG𝒢Tarski
mideu.s S=pInv𝒢G
mideu.1 φAP
mideu.2 φBP
mideu.3 φGDim𝒢2
Assertion mideu φ∃!xPB=SxA

Proof

Step Hyp Ref Expression
1 colperpex.p P=BaseG
2 colperpex.d -˙=distG
3 colperpex.i I=ItvG
4 colperpex.l L=Line𝒢G
5 colperpex.g φG𝒢Tarski
6 mideu.s S=pInv𝒢G
7 mideu.1 φAP
8 mideu.2 φBP
9 mideu.3 φGDim𝒢2
10 1 2 3 4 5 6 7 8 9 midex φxPB=SxA
11 5 ad2antrr φxPyPB=SxAB=SyAG𝒢Tarski
12 simplrl φxPyPB=SxAB=SyAxP
13 simplrr φxPyPB=SxAB=SyAyP
14 7 ad2antrr φxPyPB=SxAB=SyAAP
15 8 ad2antrr φxPyPB=SxAB=SyABP
16 simprl φxPyPB=SxAB=SyAB=SxA
17 16 eqcomd φxPyPB=SxAB=SyASxA=B
18 simprr φxPyPB=SxAB=SyAB=SyA
19 18 eqcomd φxPyPB=SxAB=SyASyA=B
20 1 2 3 4 6 11 12 13 14 15 17 19 miduniq φxPyPB=SxAB=SyAx=y
21 20 ex φxPyPB=SxAB=SyAx=y
22 21 ralrimivva φxPyPB=SxAB=SyAx=y
23 fveq2 x=ySx=Sy
24 23 fveq1d x=ySxA=SyA
25 24 eqeq2d x=yB=SxAB=SyA
26 25 rmo4 *xPB=SxAxPyPB=SxAB=SyAx=y
27 22 26 sylibr φ*xPB=SxA
28 reu5 ∃!xPB=SxAxPB=SxA*xPB=SxA
29 10 27 28 sylanbrc φ∃!xPB=SxA