Step |
Hyp |
Ref |
Expression |
1 |
|
colperpex.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
2 |
|
colperpex.d |
⊢ − = ( dist ‘ 𝐺 ) |
3 |
|
colperpex.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
4 |
|
colperpex.l |
⊢ 𝐿 = ( LineG ‘ 𝐺 ) |
5 |
|
colperpex.g |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
6 |
|
mideu.s |
⊢ 𝑆 = ( pInvG ‘ 𝐺 ) |
7 |
|
mideu.1 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑃 ) |
8 |
|
mideu.2 |
⊢ ( 𝜑 → 𝐵 ∈ 𝑃 ) |
9 |
|
mideulem.1 |
⊢ ( 𝜑 → 𝐴 ≠ 𝐵 ) |
10 |
|
mideulem.2 |
⊢ ( 𝜑 → 𝑄 ∈ 𝑃 ) |
11 |
|
mideulem.3 |
⊢ ( 𝜑 → 𝑂 ∈ 𝑃 ) |
12 |
|
mideulem.4 |
⊢ ( 𝜑 → 𝑇 ∈ 𝑃 ) |
13 |
|
mideulem.5 |
⊢ ( 𝜑 → ( 𝐴 𝐿 𝐵 ) ( ⟂G ‘ 𝐺 ) ( 𝑄 𝐿 𝐵 ) ) |
14 |
|
mideulem.6 |
⊢ ( 𝜑 → ( 𝐴 𝐿 𝐵 ) ( ⟂G ‘ 𝐺 ) ( 𝐴 𝐿 𝑂 ) ) |
15 |
|
mideulem.7 |
⊢ ( 𝜑 → 𝑇 ∈ ( 𝐴 𝐿 𝐵 ) ) |
16 |
|
mideulem.8 |
⊢ ( 𝜑 → 𝑇 ∈ ( 𝑄 𝐼 𝑂 ) ) |
17 |
|
opphllem.1 |
⊢ ( 𝜑 → 𝑅 ∈ 𝑃 ) |
18 |
|
opphllem.2 |
⊢ ( 𝜑 → 𝑅 ∈ ( 𝐵 𝐼 𝑄 ) ) |
19 |
|
opphllem.3 |
⊢ ( 𝜑 → ( 𝐴 − 𝑂 ) = ( 𝐵 − 𝑅 ) ) |
20 |
|
mideulem2.1 |
⊢ ( 𝜑 → 𝑋 ∈ 𝑃 ) |
21 |
|
mideulem2.2 |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝑇 𝐼 𝐵 ) ) |
22 |
|
mideulem2.3 |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝑅 𝐼 𝑂 ) ) |
23 |
|
mideulem2.4 |
⊢ ( 𝜑 → 𝑍 ∈ 𝑃 ) |
24 |
|
mideulem2.5 |
⊢ ( 𝜑 → 𝑋 ∈ ( ( ( 𝑆 ‘ 𝐴 ) ‘ 𝑂 ) 𝐼 𝑍 ) ) |
25 |
|
mideulem2.6 |
⊢ ( 𝜑 → ( 𝑋 − 𝑍 ) = ( 𝑋 − 𝑅 ) ) |
26 |
|
mideulem2.7 |
⊢ ( 𝜑 → 𝑀 ∈ 𝑃 ) |
27 |
|
mideulem2.8 |
⊢ ( 𝜑 → 𝑅 = ( ( 𝑆 ‘ 𝑀 ) ‘ 𝑍 ) ) |
28 |
|
oveq2 |
⊢ ( 𝑦 = 𝐵 → ( 𝑅 𝐿 𝑦 ) = ( 𝑅 𝐿 𝐵 ) ) |
29 |
28
|
breq1d |
⊢ ( 𝑦 = 𝐵 → ( ( 𝑅 𝐿 𝑦 ) ( ⟂G ‘ 𝐺 ) ( 𝐴 𝐿 𝐵 ) ↔ ( 𝑅 𝐿 𝐵 ) ( ⟂G ‘ 𝐺 ) ( 𝐴 𝐿 𝐵 ) ) ) |
30 |
|
oveq2 |
⊢ ( 𝑦 = 𝑀 → ( 𝑅 𝐿 𝑦 ) = ( 𝑅 𝐿 𝑀 ) ) |
31 |
30
|
breq1d |
⊢ ( 𝑦 = 𝑀 → ( ( 𝑅 𝐿 𝑦 ) ( ⟂G ‘ 𝐺 ) ( 𝐴 𝐿 𝐵 ) ↔ ( 𝑅 𝐿 𝑀 ) ( ⟂G ‘ 𝐺 ) ( 𝐴 𝐿 𝐵 ) ) ) |
32 |
1 3 4 5 7 8 9
|
tgelrnln |
⊢ ( 𝜑 → ( 𝐴 𝐿 𝐵 ) ∈ ran 𝐿 ) |
33 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑅 ∈ ( 𝐴 𝐿 𝐵 ) ) → 𝐴 ≠ 𝐵 ) |
34 |
33
|
neneqd |
⊢ ( ( 𝜑 ∧ 𝑅 ∈ ( 𝐴 𝐿 𝐵 ) ) → ¬ 𝐴 = 𝐵 ) |
35 |
4 5 14
|
perpln2 |
⊢ ( 𝜑 → ( 𝐴 𝐿 𝑂 ) ∈ ran 𝐿 ) |
36 |
1 3 4 5 7 11 35
|
tglnne |
⊢ ( 𝜑 → 𝐴 ≠ 𝑂 ) |
37 |
1 2 3 5 7 11 8 17 19 36
|
tgcgrneq |
⊢ ( 𝜑 → 𝐵 ≠ 𝑅 ) |
38 |
37
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑅 ∈ ( 𝐴 𝐿 𝐵 ) ) → 𝐵 ≠ 𝑅 ) |
39 |
38
|
necomd |
⊢ ( ( 𝜑 ∧ 𝑅 ∈ ( 𝐴 𝐿 𝐵 ) ) → 𝑅 ≠ 𝐵 ) |
40 |
39
|
neneqd |
⊢ ( ( 𝜑 ∧ 𝑅 ∈ ( 𝐴 𝐿 𝐵 ) ) → ¬ 𝑅 = 𝐵 ) |
41 |
34 40
|
jca |
⊢ ( ( 𝜑 ∧ 𝑅 ∈ ( 𝐴 𝐿 𝐵 ) ) → ( ¬ 𝐴 = 𝐵 ∧ ¬ 𝑅 = 𝐵 ) ) |
42 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑅 ∈ ( 𝐴 𝐿 𝐵 ) ) → 𝐺 ∈ TarskiG ) |
43 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑅 ∈ ( 𝐴 𝐿 𝐵 ) ) → 𝐴 ∈ 𝑃 ) |
44 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑅 ∈ ( 𝐴 𝐿 𝐵 ) ) → 𝐵 ∈ 𝑃 ) |
45 |
17
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑅 ∈ ( 𝐴 𝐿 𝐵 ) ) → 𝑅 ∈ 𝑃 ) |
46 |
4 5 13
|
perpln2 |
⊢ ( 𝜑 → ( 𝑄 𝐿 𝐵 ) ∈ ran 𝐿 ) |
47 |
1 3 4 5 10 8 46
|
tglnne |
⊢ ( 𝜑 → 𝑄 ≠ 𝐵 ) |
48 |
1 3 4 5 10 8 47
|
tglinerflx2 |
⊢ ( 𝜑 → 𝐵 ∈ ( 𝑄 𝐿 𝐵 ) ) |
49 |
1 2 3 4 5 32 46 13
|
perpcom |
⊢ ( 𝜑 → ( 𝑄 𝐿 𝐵 ) ( ⟂G ‘ 𝐺 ) ( 𝐴 𝐿 𝐵 ) ) |
50 |
1 3 4 5 7 8 9
|
tglinecom |
⊢ ( 𝜑 → ( 𝐴 𝐿 𝐵 ) = ( 𝐵 𝐿 𝐴 ) ) |
51 |
49 50
|
breqtrd |
⊢ ( 𝜑 → ( 𝑄 𝐿 𝐵 ) ( ⟂G ‘ 𝐺 ) ( 𝐵 𝐿 𝐴 ) ) |
52 |
1 2 3 4 5 10 8 48 7 51
|
perprag |
⊢ ( 𝜑 → ⟨“ 𝑄 𝐵 𝐴 ”⟩ ∈ ( ∟G ‘ 𝐺 ) ) |
53 |
1 4 3 5 8 17 10 18
|
btwncolg3 |
⊢ ( 𝜑 → ( 𝑄 ∈ ( 𝐵 𝐿 𝑅 ) ∨ 𝐵 = 𝑅 ) ) |
54 |
1 2 3 4 6 5 10 8 7 17 52 47 53
|
ragcol |
⊢ ( 𝜑 → ⟨“ 𝑅 𝐵 𝐴 ”⟩ ∈ ( ∟G ‘ 𝐺 ) ) |
55 |
1 2 3 4 6 5 17 8 7 54
|
ragcom |
⊢ ( 𝜑 → ⟨“ 𝐴 𝐵 𝑅 ”⟩ ∈ ( ∟G ‘ 𝐺 ) ) |
56 |
55
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑅 ∈ ( 𝐴 𝐿 𝐵 ) ) → ⟨“ 𝐴 𝐵 𝑅 ”⟩ ∈ ( ∟G ‘ 𝐺 ) ) |
57 |
|
animorrl |
⊢ ( ( 𝜑 ∧ 𝑅 ∈ ( 𝐴 𝐿 𝐵 ) ) → ( 𝑅 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) |
58 |
1 2 3 4 6 42 43 44 45 56 57
|
ragflat3 |
⊢ ( ( 𝜑 ∧ 𝑅 ∈ ( 𝐴 𝐿 𝐵 ) ) → ( 𝐴 = 𝐵 ∨ 𝑅 = 𝐵 ) ) |
59 |
|
oran |
⊢ ( ( 𝐴 = 𝐵 ∨ 𝑅 = 𝐵 ) ↔ ¬ ( ¬ 𝐴 = 𝐵 ∧ ¬ 𝑅 = 𝐵 ) ) |
60 |
58 59
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑅 ∈ ( 𝐴 𝐿 𝐵 ) ) → ¬ ( ¬ 𝐴 = 𝐵 ∧ ¬ 𝑅 = 𝐵 ) ) |
61 |
41 60
|
pm2.65da |
⊢ ( 𝜑 → ¬ 𝑅 ∈ ( 𝐴 𝐿 𝐵 ) ) |
62 |
1 2 3 4 5 32 17 61
|
foot |
⊢ ( 𝜑 → ∃! 𝑦 ∈ ( 𝐴 𝐿 𝐵 ) ( 𝑅 𝐿 𝑦 ) ( ⟂G ‘ 𝐺 ) ( 𝐴 𝐿 𝐵 ) ) |
63 |
1 3 4 5 7 8 9
|
tglinerflx2 |
⊢ ( 𝜑 → 𝐵 ∈ ( 𝐴 𝐿 𝐵 ) ) |
64 |
9
|
neneqd |
⊢ ( 𝜑 → ¬ 𝐴 = 𝐵 ) |
65 |
|
oveq2 |
⊢ ( 𝑦 = 𝐴 → ( 𝑅 𝐿 𝑦 ) = ( 𝑅 𝐿 𝐴 ) ) |
66 |
65
|
breq1d |
⊢ ( 𝑦 = 𝐴 → ( ( 𝑅 𝐿 𝑦 ) ( ⟂G ‘ 𝐺 ) ( 𝐴 𝐿 𝐵 ) ↔ ( 𝑅 𝐿 𝐴 ) ( ⟂G ‘ 𝐺 ) ( 𝐴 𝐿 𝐵 ) ) ) |
67 |
62
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 = 𝐴 ) → ∃! 𝑦 ∈ ( 𝐴 𝐿 𝐵 ) ( 𝑅 𝐿 𝑦 ) ( ⟂G ‘ 𝐺 ) ( 𝐴 𝐿 𝐵 ) ) |
68 |
1 3 4 5 7 8 9
|
tglinerflx1 |
⊢ ( 𝜑 → 𝐴 ∈ ( 𝐴 𝐿 𝐵 ) ) |
69 |
68
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 = 𝐴 ) → 𝐴 ∈ ( 𝐴 𝐿 𝐵 ) ) |
70 |
63
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 = 𝐴 ) → 𝐵 ∈ ( 𝐴 𝐿 𝐵 ) ) |
71 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 = 𝐴 ) → 𝐺 ∈ TarskiG ) |
72 |
17
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 = 𝐴 ) → 𝑅 ∈ 𝑃 ) |
73 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 = 𝐴 ) → 𝐴 ∈ 𝑃 ) |
74 |
61 64
|
jca |
⊢ ( 𝜑 → ( ¬ 𝑅 ∈ ( 𝐴 𝐿 𝐵 ) ∧ ¬ 𝐴 = 𝐵 ) ) |
75 |
|
pm4.56 |
⊢ ( ( ¬ 𝑅 ∈ ( 𝐴 𝐿 𝐵 ) ∧ ¬ 𝐴 = 𝐵 ) ↔ ¬ ( 𝑅 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) |
76 |
74 75
|
sylib |
⊢ ( 𝜑 → ¬ ( 𝑅 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) |
77 |
1 3 4 5 17 7 8 76
|
ncolne1 |
⊢ ( 𝜑 → 𝑅 ≠ 𝐴 ) |
78 |
77
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 = 𝐴 ) → 𝑅 ≠ 𝐴 ) |
79 |
1 3 4 71 72 73 78
|
tglinecom |
⊢ ( ( 𝜑 ∧ 𝑋 = 𝐴 ) → ( 𝑅 𝐿 𝐴 ) = ( 𝐴 𝐿 𝑅 ) ) |
80 |
78
|
necomd |
⊢ ( ( 𝜑 ∧ 𝑋 = 𝐴 ) → 𝐴 ≠ 𝑅 ) |
81 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 = 𝐴 ) → 𝑂 ∈ 𝑃 ) |
82 |
36
|
necomd |
⊢ ( 𝜑 → 𝑂 ≠ 𝐴 ) |
83 |
82
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 = 𝐴 ) → 𝑂 ≠ 𝐴 ) |
84 |
20
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 = 𝐴 ) → 𝑋 ∈ 𝑃 ) |
85 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑋 = 𝐴 ) → 𝑋 = 𝐴 ) |
86 |
85 80
|
eqnetrd |
⊢ ( ( 𝜑 ∧ 𝑋 = 𝐴 ) → 𝑋 ≠ 𝑅 ) |
87 |
1 2 3 5 17 20 11 22
|
tgbtwncom |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝑂 𝐼 𝑅 ) ) |
88 |
1 3 4 5 12 7 8 20 15 21
|
coltr3 |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝐴 𝐿 𝐵 ) ) |
89 |
9
|
necomd |
⊢ ( 𝜑 → 𝐵 ≠ 𝐴 ) |
90 |
89
|
neneqd |
⊢ ( 𝜑 → ¬ 𝐵 = 𝐴 ) |
91 |
90
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑂 ∈ ( 𝐵 𝐿 𝐴 ) ) → ¬ 𝐵 = 𝐴 ) |
92 |
82
|
neneqd |
⊢ ( 𝜑 → ¬ 𝑂 = 𝐴 ) |
93 |
92
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑂 ∈ ( 𝐵 𝐿 𝐴 ) ) → ¬ 𝑂 = 𝐴 ) |
94 |
91 93
|
jca |
⊢ ( ( 𝜑 ∧ 𝑂 ∈ ( 𝐵 𝐿 𝐴 ) ) → ( ¬ 𝐵 = 𝐴 ∧ ¬ 𝑂 = 𝐴 ) ) |
95 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑂 ∈ ( 𝐵 𝐿 𝐴 ) ) → 𝐺 ∈ TarskiG ) |
96 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑂 ∈ ( 𝐵 𝐿 𝐴 ) ) → 𝐵 ∈ 𝑃 ) |
97 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑂 ∈ ( 𝐵 𝐿 𝐴 ) ) → 𝐴 ∈ 𝑃 ) |
98 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑂 ∈ ( 𝐵 𝐿 𝐴 ) ) → 𝑂 ∈ 𝑃 ) |
99 |
1 3 4 5 8 7 89
|
tglinerflx2 |
⊢ ( 𝜑 → 𝐴 ∈ ( 𝐵 𝐿 𝐴 ) ) |
100 |
50 14
|
eqbrtrrd |
⊢ ( 𝜑 → ( 𝐵 𝐿 𝐴 ) ( ⟂G ‘ 𝐺 ) ( 𝐴 𝐿 𝑂 ) ) |
101 |
1 2 3 4 5 8 7 99 11 100
|
perprag |
⊢ ( 𝜑 → ⟨“ 𝐵 𝐴 𝑂 ”⟩ ∈ ( ∟G ‘ 𝐺 ) ) |
102 |
101
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑂 ∈ ( 𝐵 𝐿 𝐴 ) ) → ⟨“ 𝐵 𝐴 𝑂 ”⟩ ∈ ( ∟G ‘ 𝐺 ) ) |
103 |
|
animorrl |
⊢ ( ( 𝜑 ∧ 𝑂 ∈ ( 𝐵 𝐿 𝐴 ) ) → ( 𝑂 ∈ ( 𝐵 𝐿 𝐴 ) ∨ 𝐵 = 𝐴 ) ) |
104 |
1 2 3 4 6 95 96 97 98 102 103
|
ragflat3 |
⊢ ( ( 𝜑 ∧ 𝑂 ∈ ( 𝐵 𝐿 𝐴 ) ) → ( 𝐵 = 𝐴 ∨ 𝑂 = 𝐴 ) ) |
105 |
|
oran |
⊢ ( ( 𝐵 = 𝐴 ∨ 𝑂 = 𝐴 ) ↔ ¬ ( ¬ 𝐵 = 𝐴 ∧ ¬ 𝑂 = 𝐴 ) ) |
106 |
104 105
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑂 ∈ ( 𝐵 𝐿 𝐴 ) ) → ¬ ( ¬ 𝐵 = 𝐴 ∧ ¬ 𝑂 = 𝐴 ) ) |
107 |
94 106
|
pm2.65da |
⊢ ( 𝜑 → ¬ 𝑂 ∈ ( 𝐵 𝐿 𝐴 ) ) |
108 |
107 50
|
neleqtrrd |
⊢ ( 𝜑 → ¬ 𝑂 ∈ ( 𝐴 𝐿 𝐵 ) ) |
109 |
|
nelne2 |
⊢ ( ( 𝑋 ∈ ( 𝐴 𝐿 𝐵 ) ∧ ¬ 𝑂 ∈ ( 𝐴 𝐿 𝐵 ) ) → 𝑋 ≠ 𝑂 ) |
110 |
88 108 109
|
syl2anc |
⊢ ( 𝜑 → 𝑋 ≠ 𝑂 ) |
111 |
1 2 3 5 11 20 17 87 110
|
tgbtwnne |
⊢ ( 𝜑 → 𝑂 ≠ 𝑅 ) |
112 |
111
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 = 𝐴 ) → 𝑂 ≠ 𝑅 ) |
113 |
112
|
necomd |
⊢ ( ( 𝜑 ∧ 𝑋 = 𝐴 ) → 𝑅 ≠ 𝑂 ) |
114 |
22
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 = 𝐴 ) → 𝑋 ∈ ( 𝑅 𝐼 𝑂 ) ) |
115 |
1 3 4 71 72 81 84 113 114
|
btwnlng1 |
⊢ ( ( 𝜑 ∧ 𝑋 = 𝐴 ) → 𝑋 ∈ ( 𝑅 𝐿 𝑂 ) ) |
116 |
1 3 4 71 84 72 81 86 115 113
|
lnrot2 |
⊢ ( ( 𝜑 ∧ 𝑋 = 𝐴 ) → 𝑂 ∈ ( 𝑋 𝐿 𝑅 ) ) |
117 |
85
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑋 = 𝐴 ) → ( 𝑋 𝐿 𝑅 ) = ( 𝐴 𝐿 𝑅 ) ) |
118 |
116 117
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑋 = 𝐴 ) → 𝑂 ∈ ( 𝐴 𝐿 𝑅 ) ) |
119 |
1 3 4 71 73 72 80 81 83 118
|
tglineelsb2 |
⊢ ( ( 𝜑 ∧ 𝑋 = 𝐴 ) → ( 𝐴 𝐿 𝑅 ) = ( 𝐴 𝐿 𝑂 ) ) |
120 |
79 119
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑋 = 𝐴 ) → ( 𝑅 𝐿 𝐴 ) = ( 𝐴 𝐿 𝑂 ) ) |
121 |
1 2 3 4 5 32 35 14
|
perpcom |
⊢ ( 𝜑 → ( 𝐴 𝐿 𝑂 ) ( ⟂G ‘ 𝐺 ) ( 𝐴 𝐿 𝐵 ) ) |
122 |
121
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 = 𝐴 ) → ( 𝐴 𝐿 𝑂 ) ( ⟂G ‘ 𝐺 ) ( 𝐴 𝐿 𝐵 ) ) |
123 |
120 122
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ 𝑋 = 𝐴 ) → ( 𝑅 𝐿 𝐴 ) ( ⟂G ‘ 𝐺 ) ( 𝐴 𝐿 𝐵 ) ) |
124 |
32
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 = 𝐴 ) → ( 𝐴 𝐿 𝐵 ) ∈ ran 𝐿 ) |
125 |
37
|
necomd |
⊢ ( 𝜑 → 𝑅 ≠ 𝐵 ) |
126 |
1 3 4 5 17 8 125
|
tgelrnln |
⊢ ( 𝜑 → ( 𝑅 𝐿 𝐵 ) ∈ ran 𝐿 ) |
127 |
126
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 = 𝐴 ) → ( 𝑅 𝐿 𝐵 ) ∈ ran 𝐿 ) |
128 |
1 3 4 5 17 8 125
|
tglinerflx2 |
⊢ ( 𝜑 → 𝐵 ∈ ( 𝑅 𝐿 𝐵 ) ) |
129 |
63 128
|
elind |
⊢ ( 𝜑 → 𝐵 ∈ ( ( 𝐴 𝐿 𝐵 ) ∩ ( 𝑅 𝐿 𝐵 ) ) ) |
130 |
1 3 4 5 17 8 125
|
tglinerflx1 |
⊢ ( 𝜑 → 𝑅 ∈ ( 𝑅 𝐿 𝐵 ) ) |
131 |
1 2 3 4 5 32 126 129 68 130 9 125 55
|
ragperp |
⊢ ( 𝜑 → ( 𝐴 𝐿 𝐵 ) ( ⟂G ‘ 𝐺 ) ( 𝑅 𝐿 𝐵 ) ) |
132 |
131
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 = 𝐴 ) → ( 𝐴 𝐿 𝐵 ) ( ⟂G ‘ 𝐺 ) ( 𝑅 𝐿 𝐵 ) ) |
133 |
1 2 3 4 71 124 127 132
|
perpcom |
⊢ ( ( 𝜑 ∧ 𝑋 = 𝐴 ) → ( 𝑅 𝐿 𝐵 ) ( ⟂G ‘ 𝐺 ) ( 𝐴 𝐿 𝐵 ) ) |
134 |
66 29 67 69 70 123 133
|
reu2eqd |
⊢ ( ( 𝜑 ∧ 𝑋 = 𝐴 ) → 𝐴 = 𝐵 ) |
135 |
64 134
|
mtand |
⊢ ( 𝜑 → ¬ 𝑋 = 𝐴 ) |
136 |
135
|
neqned |
⊢ ( 𝜑 → 𝑋 ≠ 𝐴 ) |
137 |
136
|
necomd |
⊢ ( 𝜑 → 𝐴 ≠ 𝑋 ) |
138 |
|
eqid |
⊢ ( 𝑆 ‘ 𝐴 ) = ( 𝑆 ‘ 𝐴 ) |
139 |
|
eqid |
⊢ ( 𝑆 ‘ 𝑀 ) = ( 𝑆 ‘ 𝑀 ) |
140 |
1 2 3 4 6 5 7 138 11
|
mircl |
⊢ ( 𝜑 → ( ( 𝑆 ‘ 𝐴 ) ‘ 𝑂 ) ∈ 𝑃 ) |
141 |
88
|
orcd |
⊢ ( 𝜑 → ( 𝑋 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) |
142 |
1 4 3 5 7 8 20 141
|
colcom |
⊢ ( 𝜑 → ( 𝑋 ∈ ( 𝐵 𝐿 𝐴 ) ∨ 𝐵 = 𝐴 ) ) |
143 |
1 4 3 5 8 7 20 142
|
colrot1 |
⊢ ( 𝜑 → ( 𝐵 ∈ ( 𝐴 𝐿 𝑋 ) ∨ 𝐴 = 𝑋 ) ) |
144 |
1 2 3 4 6 5 8 7 11 20 101 89 143
|
ragcol |
⊢ ( 𝜑 → ⟨“ 𝑋 𝐴 𝑂 ”⟩ ∈ ( ∟G ‘ 𝐺 ) ) |
145 |
1 2 3 4 6 5 20 7 11
|
israg |
⊢ ( 𝜑 → ( ⟨“ 𝑋 𝐴 𝑂 ”⟩ ∈ ( ∟G ‘ 𝐺 ) ↔ ( 𝑋 − 𝑂 ) = ( 𝑋 − ( ( 𝑆 ‘ 𝐴 ) ‘ 𝑂 ) ) ) ) |
146 |
144 145
|
mpbid |
⊢ ( 𝜑 → ( 𝑋 − 𝑂 ) = ( 𝑋 − ( ( 𝑆 ‘ 𝐴 ) ‘ 𝑂 ) ) ) |
147 |
25
|
eqcomd |
⊢ ( 𝜑 → ( 𝑋 − 𝑅 ) = ( 𝑋 − 𝑍 ) ) |
148 |
|
eqidd |
⊢ ( 𝜑 → ( ( 𝑆 ‘ 𝐴 ) ‘ 𝑂 ) = ( ( 𝑆 ‘ 𝐴 ) ‘ 𝑂 ) ) |
149 |
27
|
eqcomd |
⊢ ( 𝜑 → ( ( 𝑆 ‘ 𝑀 ) ‘ 𝑍 ) = 𝑅 ) |
150 |
1 2 3 4 6 5 26 139 23 149
|
mircom |
⊢ ( 𝜑 → ( ( 𝑆 ‘ 𝑀 ) ‘ 𝑅 ) = 𝑍 ) |
151 |
150
|
eqcomd |
⊢ ( 𝜑 → 𝑍 = ( ( 𝑆 ‘ 𝑀 ) ‘ 𝑅 ) ) |
152 |
1 2 3 4 6 5 138 139 11 140 20 17 23 7 26 87 24 146 147 148 151
|
krippen |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝐴 𝐼 𝑀 ) ) |
153 |
1 3 4 5 7 20 26 137 152
|
btwnlng3 |
⊢ ( 𝜑 → 𝑀 ∈ ( 𝐴 𝐿 𝑋 ) ) |
154 |
1 3 4 5 7 8 9 20 136 88 26 153
|
tglineeltr |
⊢ ( 𝜑 → 𝑀 ∈ ( 𝐴 𝐿 𝐵 ) ) |
155 |
1 2 3 4 5 32 126 131
|
perpcom |
⊢ ( 𝜑 → ( 𝑅 𝐿 𝐵 ) ( ⟂G ‘ 𝐺 ) ( 𝐴 𝐿 𝐵 ) ) |
156 |
|
nelne2 |
⊢ ( ( 𝑀 ∈ ( 𝐴 𝐿 𝐵 ) ∧ ¬ 𝑅 ∈ ( 𝐴 𝐿 𝐵 ) ) → 𝑀 ≠ 𝑅 ) |
157 |
154 61 156
|
syl2anc |
⊢ ( 𝜑 → 𝑀 ≠ 𝑅 ) |
158 |
157
|
necomd |
⊢ ( 𝜑 → 𝑅 ≠ 𝑀 ) |
159 |
1 3 4 5 17 26 158
|
tgelrnln |
⊢ ( 𝜑 → ( 𝑅 𝐿 𝑀 ) ∈ ran 𝐿 ) |
160 |
1 3 4 5 17 26 158
|
tglinerflx2 |
⊢ ( 𝜑 → 𝑀 ∈ ( 𝑅 𝐿 𝑀 ) ) |
161 |
154 160
|
elind |
⊢ ( 𝜑 → 𝑀 ∈ ( ( 𝐴 𝐿 𝐵 ) ∩ ( 𝑅 𝐿 𝑀 ) ) ) |
162 |
1 3 4 5 17 26 158
|
tglinerflx1 |
⊢ ( 𝜑 → 𝑅 ∈ ( 𝑅 𝐿 𝑀 ) ) |
163 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑀 = 𝑋 ) → 𝑀 = 𝑋 ) |
164 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑀 = 𝑋 ) → 𝐺 ∈ TarskiG ) |
165 |
26
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑀 = 𝑋 ) → 𝑀 ∈ 𝑃 ) |
166 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑀 = 𝑋 ) → 𝐴 ∈ 𝑃 ) |
167 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑀 = 𝑋 ) → 𝑂 ∈ 𝑃 ) |
168 |
140
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑀 = 𝑋 ) → ( ( 𝑆 ‘ 𝐴 ) ‘ 𝑂 ) ∈ 𝑃 ) |
169 |
146
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑀 = 𝑋 ) → ( 𝑋 − 𝑂 ) = ( 𝑋 − ( ( 𝑆 ‘ 𝐴 ) ‘ 𝑂 ) ) ) |
170 |
163
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑀 = 𝑋 ) → ( 𝑀 − 𝑂 ) = ( 𝑋 − 𝑂 ) ) |
171 |
163
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑀 = 𝑋 ) → ( 𝑀 − ( ( 𝑆 ‘ 𝐴 ) ‘ 𝑂 ) ) = ( 𝑋 − ( ( 𝑆 ‘ 𝐴 ) ‘ 𝑂 ) ) ) |
172 |
169 170 171
|
3eqtr4rd |
⊢ ( ( 𝜑 ∧ 𝑀 = 𝑋 ) → ( 𝑀 − ( ( 𝑆 ‘ 𝐴 ) ‘ 𝑂 ) ) = ( 𝑀 − 𝑂 ) ) |
173 |
23
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑀 = 𝑋 ) → 𝑍 ∈ 𝑃 ) |
174 |
17
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑀 = 𝑋 ) → 𝑅 ∈ 𝑃 ) |
175 |
27
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑀 = 𝑋 ) → 𝑅 = ( ( 𝑆 ‘ 𝑀 ) ‘ 𝑍 ) ) |
176 |
175
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑀 = 𝑋 ) → ( 𝑀 − 𝑅 ) = ( 𝑀 − ( ( 𝑆 ‘ 𝑀 ) ‘ 𝑍 ) ) ) |
177 |
1 2 3 4 6 164 165 139 173
|
mircgr |
⊢ ( ( 𝜑 ∧ 𝑀 = 𝑋 ) → ( 𝑀 − ( ( 𝑆 ‘ 𝑀 ) ‘ 𝑍 ) ) = ( 𝑀 − 𝑍 ) ) |
178 |
176 177
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑀 = 𝑋 ) → ( 𝑀 − 𝑅 ) = ( 𝑀 − 𝑍 ) ) |
179 |
1 2 3 164 165 174 165 173 178
|
tgcgrcomlr |
⊢ ( ( 𝜑 ∧ 𝑀 = 𝑋 ) → ( 𝑅 − 𝑀 ) = ( 𝑍 − 𝑀 ) ) |
180 |
88
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑀 = 𝑋 ) → 𝑋 ∈ ( 𝐴 𝐿 𝐵 ) ) |
181 |
163 180
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑀 = 𝑋 ) → 𝑀 ∈ ( 𝐴 𝐿 𝐵 ) ) |
182 |
61
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑀 = 𝑋 ) → ¬ 𝑅 ∈ ( 𝐴 𝐿 𝐵 ) ) |
183 |
181 182 156
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑀 = 𝑋 ) → 𝑀 ≠ 𝑅 ) |
184 |
183
|
necomd |
⊢ ( ( 𝜑 ∧ 𝑀 = 𝑋 ) → 𝑅 ≠ 𝑀 ) |
185 |
1 2 3 164 174 165 173 165 179 184
|
tgcgrneq |
⊢ ( ( 𝜑 ∧ 𝑀 = 𝑋 ) → 𝑍 ≠ 𝑀 ) |
186 |
1 2 3 4 6 5 26 139 23
|
mirbtwn |
⊢ ( 𝜑 → 𝑀 ∈ ( ( ( 𝑆 ‘ 𝑀 ) ‘ 𝑍 ) 𝐼 𝑍 ) ) |
187 |
27
|
oveq1d |
⊢ ( 𝜑 → ( 𝑅 𝐼 𝑍 ) = ( ( ( 𝑆 ‘ 𝑀 ) ‘ 𝑍 ) 𝐼 𝑍 ) ) |
188 |
186 187
|
eleqtrrd |
⊢ ( 𝜑 → 𝑀 ∈ ( 𝑅 𝐼 𝑍 ) ) |
189 |
188
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑀 = 𝑋 ) → 𝑀 ∈ ( 𝑅 𝐼 𝑍 ) ) |
190 |
1 2 3 164 174 165 173 189
|
tgbtwncom |
⊢ ( ( 𝜑 ∧ 𝑀 = 𝑋 ) → 𝑀 ∈ ( 𝑍 𝐼 𝑅 ) ) |
191 |
24
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑀 = 𝑋 ) → 𝑋 ∈ ( ( ( 𝑆 ‘ 𝐴 ) ‘ 𝑂 ) 𝐼 𝑍 ) ) |
192 |
163 191
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑀 = 𝑋 ) → 𝑀 ∈ ( ( ( 𝑆 ‘ 𝐴 ) ‘ 𝑂 ) 𝐼 𝑍 ) ) |
193 |
1 2 3 164 168 165 173 192
|
tgbtwncom |
⊢ ( ( 𝜑 ∧ 𝑀 = 𝑋 ) → 𝑀 ∈ ( 𝑍 𝐼 ( ( 𝑆 ‘ 𝐴 ) ‘ 𝑂 ) ) ) |
194 |
22
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑀 = 𝑋 ) → 𝑋 ∈ ( 𝑅 𝐼 𝑂 ) ) |
195 |
163 194
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑀 = 𝑋 ) → 𝑀 ∈ ( 𝑅 𝐼 𝑂 ) ) |
196 |
1 3 164 173 165 174 168 167 185 184 190 193 195
|
tgbtwnconn22 |
⊢ ( ( 𝜑 ∧ 𝑀 = 𝑋 ) → 𝑀 ∈ ( ( ( 𝑆 ‘ 𝐴 ) ‘ 𝑂 ) 𝐼 𝑂 ) ) |
197 |
1 2 3 4 6 164 165 139 167 168 172 196
|
ismir |
⊢ ( ( 𝜑 ∧ 𝑀 = 𝑋 ) → ( ( 𝑆 ‘ 𝐴 ) ‘ 𝑂 ) = ( ( 𝑆 ‘ 𝑀 ) ‘ 𝑂 ) ) |
198 |
197
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑀 = 𝑋 ) → ( ( 𝑆 ‘ 𝑀 ) ‘ 𝑂 ) = ( ( 𝑆 ‘ 𝐴 ) ‘ 𝑂 ) ) |
199 |
1 2 3 4 6 164 165 166 167 198
|
miduniq1 |
⊢ ( ( 𝜑 ∧ 𝑀 = 𝑋 ) → 𝑀 = 𝐴 ) |
200 |
163 199
|
eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑀 = 𝑋 ) → 𝑋 = 𝐴 ) |
201 |
135 200
|
mtand |
⊢ ( 𝜑 → ¬ 𝑀 = 𝑋 ) |
202 |
201
|
neqned |
⊢ ( 𝜑 → 𝑀 ≠ 𝑋 ) |
203 |
202
|
necomd |
⊢ ( 𝜑 → 𝑋 ≠ 𝑀 ) |
204 |
150
|
oveq2d |
⊢ ( 𝜑 → ( 𝑋 − ( ( 𝑆 ‘ 𝑀 ) ‘ 𝑅 ) ) = ( 𝑋 − 𝑍 ) ) |
205 |
204 25
|
eqtr2d |
⊢ ( 𝜑 → ( 𝑋 − 𝑅 ) = ( 𝑋 − ( ( 𝑆 ‘ 𝑀 ) ‘ 𝑅 ) ) ) |
206 |
1 2 3 4 6 5 20 26 17
|
israg |
⊢ ( 𝜑 → ( ⟨“ 𝑋 𝑀 𝑅 ”⟩ ∈ ( ∟G ‘ 𝐺 ) ↔ ( 𝑋 − 𝑅 ) = ( 𝑋 − ( ( 𝑆 ‘ 𝑀 ) ‘ 𝑅 ) ) ) ) |
207 |
205 206
|
mpbird |
⊢ ( 𝜑 → ⟨“ 𝑋 𝑀 𝑅 ”⟩ ∈ ( ∟G ‘ 𝐺 ) ) |
208 |
1 2 3 4 5 32 159 161 88 162 203 158 207
|
ragperp |
⊢ ( 𝜑 → ( 𝐴 𝐿 𝐵 ) ( ⟂G ‘ 𝐺 ) ( 𝑅 𝐿 𝑀 ) ) |
209 |
1 2 3 4 5 32 159 208
|
perpcom |
⊢ ( 𝜑 → ( 𝑅 𝐿 𝑀 ) ( ⟂G ‘ 𝐺 ) ( 𝐴 𝐿 𝐵 ) ) |
210 |
29 31 62 63 154 155 209
|
reu2eqd |
⊢ ( 𝜑 → 𝐵 = 𝑀 ) |