| Step |
Hyp |
Ref |
Expression |
| 1 |
|
colperpex.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
| 2 |
|
colperpex.d |
⊢ − = ( dist ‘ 𝐺 ) |
| 3 |
|
colperpex.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
| 4 |
|
colperpex.l |
⊢ 𝐿 = ( LineG ‘ 𝐺 ) |
| 5 |
|
colperpex.g |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
| 6 |
|
mideu.s |
⊢ 𝑆 = ( pInvG ‘ 𝐺 ) |
| 7 |
|
mideu.1 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑃 ) |
| 8 |
|
mideu.2 |
⊢ ( 𝜑 → 𝐵 ∈ 𝑃 ) |
| 9 |
|
mideulem.1 |
⊢ ( 𝜑 → 𝐴 ≠ 𝐵 ) |
| 10 |
|
mideulem.2 |
⊢ ( 𝜑 → 𝑄 ∈ 𝑃 ) |
| 11 |
|
mideulem.3 |
⊢ ( 𝜑 → 𝑂 ∈ 𝑃 ) |
| 12 |
|
mideulem.4 |
⊢ ( 𝜑 → 𝑇 ∈ 𝑃 ) |
| 13 |
|
mideulem.5 |
⊢ ( 𝜑 → ( 𝐴 𝐿 𝐵 ) ( ⟂G ‘ 𝐺 ) ( 𝑄 𝐿 𝐵 ) ) |
| 14 |
|
mideulem.6 |
⊢ ( 𝜑 → ( 𝐴 𝐿 𝐵 ) ( ⟂G ‘ 𝐺 ) ( 𝐴 𝐿 𝑂 ) ) |
| 15 |
|
mideulem.7 |
⊢ ( 𝜑 → 𝑇 ∈ ( 𝐴 𝐿 𝐵 ) ) |
| 16 |
|
mideulem.8 |
⊢ ( 𝜑 → 𝑇 ∈ ( 𝑄 𝐼 𝑂 ) ) |
| 17 |
|
opphllem.1 |
⊢ ( 𝜑 → 𝑅 ∈ 𝑃 ) |
| 18 |
|
opphllem.2 |
⊢ ( 𝜑 → 𝑅 ∈ ( 𝐵 𝐼 𝑄 ) ) |
| 19 |
|
opphllem.3 |
⊢ ( 𝜑 → ( 𝐴 − 𝑂 ) = ( 𝐵 − 𝑅 ) ) |
| 20 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝑇 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑅 𝐼 𝑂 ) ) ) ) → 𝐺 ∈ TarskiG ) |
| 21 |
|
eqid |
⊢ ( 𝑆 ‘ 𝑥 ) = ( 𝑆 ‘ 𝑥 ) |
| 22 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝑇 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑅 𝐼 𝑂 ) ) ) ) → 𝐵 ∈ 𝑃 ) |
| 23 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝑇 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑅 𝐼 𝑂 ) ) ) ) → 𝑂 ∈ 𝑃 ) |
| 24 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝑇 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑅 𝐼 𝑂 ) ) ) ) → 𝐴 ∈ 𝑃 ) |
| 25 |
17
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝑇 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑅 𝐼 𝑂 ) ) ) ) → 𝑅 ∈ 𝑃 ) |
| 26 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝑇 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑅 𝐼 𝑂 ) ) ) ) → 𝑥 ∈ 𝑃 ) |
| 27 |
9
|
necomd |
⊢ ( 𝜑 → 𝐵 ≠ 𝐴 ) |
| 28 |
27
|
neneqd |
⊢ ( 𝜑 → ¬ 𝐵 = 𝐴 ) |
| 29 |
28
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑂 ∈ ( 𝐵 𝐿 𝐴 ) ) → ¬ 𝐵 = 𝐴 ) |
| 30 |
4 5 14
|
perpln2 |
⊢ ( 𝜑 → ( 𝐴 𝐿 𝑂 ) ∈ ran 𝐿 ) |
| 31 |
1 3 4 5 7 11 30
|
tglnne |
⊢ ( 𝜑 → 𝐴 ≠ 𝑂 ) |
| 32 |
31
|
necomd |
⊢ ( 𝜑 → 𝑂 ≠ 𝐴 ) |
| 33 |
32
|
neneqd |
⊢ ( 𝜑 → ¬ 𝑂 = 𝐴 ) |
| 34 |
33
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑂 ∈ ( 𝐵 𝐿 𝐴 ) ) → ¬ 𝑂 = 𝐴 ) |
| 35 |
29 34
|
jca |
⊢ ( ( 𝜑 ∧ 𝑂 ∈ ( 𝐵 𝐿 𝐴 ) ) → ( ¬ 𝐵 = 𝐴 ∧ ¬ 𝑂 = 𝐴 ) ) |
| 36 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑂 ∈ ( 𝐵 𝐿 𝐴 ) ) → 𝐺 ∈ TarskiG ) |
| 37 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑂 ∈ ( 𝐵 𝐿 𝐴 ) ) → 𝐵 ∈ 𝑃 ) |
| 38 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑂 ∈ ( 𝐵 𝐿 𝐴 ) ) → 𝐴 ∈ 𝑃 ) |
| 39 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑂 ∈ ( 𝐵 𝐿 𝐴 ) ) → 𝑂 ∈ 𝑃 ) |
| 40 |
1 3 4 5 8 7 27
|
tglinerflx2 |
⊢ ( 𝜑 → 𝐴 ∈ ( 𝐵 𝐿 𝐴 ) ) |
| 41 |
1 3 4 5 7 8 9
|
tglinecom |
⊢ ( 𝜑 → ( 𝐴 𝐿 𝐵 ) = ( 𝐵 𝐿 𝐴 ) ) |
| 42 |
41 14
|
eqbrtrrd |
⊢ ( 𝜑 → ( 𝐵 𝐿 𝐴 ) ( ⟂G ‘ 𝐺 ) ( 𝐴 𝐿 𝑂 ) ) |
| 43 |
1 2 3 4 5 8 7 40 11 42
|
perprag |
⊢ ( 𝜑 → 〈“ 𝐵 𝐴 𝑂 ”〉 ∈ ( ∟G ‘ 𝐺 ) ) |
| 44 |
43
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑂 ∈ ( 𝐵 𝐿 𝐴 ) ) → 〈“ 𝐵 𝐴 𝑂 ”〉 ∈ ( ∟G ‘ 𝐺 ) ) |
| 45 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑂 ∈ ( 𝐵 𝐿 𝐴 ) ) → 𝑂 ∈ ( 𝐵 𝐿 𝐴 ) ) |
| 46 |
45
|
orcd |
⊢ ( ( 𝜑 ∧ 𝑂 ∈ ( 𝐵 𝐿 𝐴 ) ) → ( 𝑂 ∈ ( 𝐵 𝐿 𝐴 ) ∨ 𝐵 = 𝐴 ) ) |
| 47 |
1 2 3 4 6 36 37 38 39 44 46
|
ragflat3 |
⊢ ( ( 𝜑 ∧ 𝑂 ∈ ( 𝐵 𝐿 𝐴 ) ) → ( 𝐵 = 𝐴 ∨ 𝑂 = 𝐴 ) ) |
| 48 |
|
oran |
⊢ ( ( 𝐵 = 𝐴 ∨ 𝑂 = 𝐴 ) ↔ ¬ ( ¬ 𝐵 = 𝐴 ∧ ¬ 𝑂 = 𝐴 ) ) |
| 49 |
47 48
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑂 ∈ ( 𝐵 𝐿 𝐴 ) ) → ¬ ( ¬ 𝐵 = 𝐴 ∧ ¬ 𝑂 = 𝐴 ) ) |
| 50 |
35 49
|
pm2.65da |
⊢ ( 𝜑 → ¬ 𝑂 ∈ ( 𝐵 𝐿 𝐴 ) ) |
| 51 |
50
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝑇 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑅 𝐼 𝑂 ) ) ) ) → ¬ 𝑂 ∈ ( 𝐵 𝐿 𝐴 ) ) |
| 52 |
41
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝑇 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑅 𝐼 𝑂 ) ) ) ) → ( 𝐴 𝐿 𝐵 ) = ( 𝐵 𝐿 𝐴 ) ) |
| 53 |
51 52
|
neleqtrrd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝑇 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑅 𝐼 𝑂 ) ) ) ) → ¬ 𝑂 ∈ ( 𝐴 𝐿 𝐵 ) ) |
| 54 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝑇 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑅 𝐼 𝑂 ) ) ) ) → 𝐴 ≠ 𝐵 ) |
| 55 |
54
|
neneqd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝑇 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑅 𝐼 𝑂 ) ) ) ) → ¬ 𝐴 = 𝐵 ) |
| 56 |
53 55
|
jca |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝑇 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑅 𝐼 𝑂 ) ) ) ) → ( ¬ 𝑂 ∈ ( 𝐴 𝐿 𝐵 ) ∧ ¬ 𝐴 = 𝐵 ) ) |
| 57 |
|
pm4.56 |
⊢ ( ( ¬ 𝑂 ∈ ( 𝐴 𝐿 𝐵 ) ∧ ¬ 𝐴 = 𝐵 ) ↔ ¬ ( 𝑂 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) |
| 58 |
56 57
|
sylib |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝑇 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑅 𝐼 𝑂 ) ) ) ) → ¬ ( 𝑂 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) |
| 59 |
1 4 3 20 24 22 23 58
|
ncolrot2 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝑇 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑅 𝐼 𝑂 ) ) ) ) → ¬ ( 𝐵 ∈ ( 𝑂 𝐿 𝐴 ) ∨ 𝑂 = 𝐴 ) ) |
| 60 |
|
simprrr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝑇 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑅 𝐼 𝑂 ) ) ) ) → 𝑥 ∈ ( 𝑅 𝐼 𝑂 ) ) |
| 61 |
1 2 3 20 25 26 23 60
|
tgbtwncom |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝑇 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑅 𝐼 𝑂 ) ) ) ) → 𝑥 ∈ ( 𝑂 𝐼 𝑅 ) ) |
| 62 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝑇 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑅 𝐼 𝑂 ) ) ) ) → 𝑇 ∈ 𝑃 ) |
| 63 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝑇 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑅 𝐼 𝑂 ) ) ) ) → 𝑇 ∈ ( 𝐴 𝐿 𝐵 ) ) |
| 64 |
|
simprrl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝑇 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑅 𝐼 𝑂 ) ) ) ) → 𝑥 ∈ ( 𝑇 𝐼 𝐵 ) ) |
| 65 |
1 3 4 20 62 24 22 26 63 64
|
coltr3 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝑇 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑅 𝐼 𝑂 ) ) ) ) → 𝑥 ∈ ( 𝐴 𝐿 𝐵 ) ) |
| 66 |
50 41
|
neleqtrrd |
⊢ ( 𝜑 → ¬ 𝑂 ∈ ( 𝐴 𝐿 𝐵 ) ) |
| 67 |
66
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝑇 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑅 𝐼 𝑂 ) ) ) ) → ¬ 𝑂 ∈ ( 𝐴 𝐿 𝐵 ) ) |
| 68 |
|
nelne2 |
⊢ ( ( 𝑥 ∈ ( 𝐴 𝐿 𝐵 ) ∧ ¬ 𝑂 ∈ ( 𝐴 𝐿 𝐵 ) ) → 𝑥 ≠ 𝑂 ) |
| 69 |
65 67 68
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝑇 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑅 𝐼 𝑂 ) ) ) ) → 𝑥 ≠ 𝑂 ) |
| 70 |
1 2 3 20 23 26 25 61 69
|
tgbtwnne |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝑇 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑅 𝐼 𝑂 ) ) ) ) → 𝑂 ≠ 𝑅 ) |
| 71 |
1 2 3 4 6 5 8 7 11
|
israg |
⊢ ( 𝜑 → ( 〈“ 𝐵 𝐴 𝑂 ”〉 ∈ ( ∟G ‘ 𝐺 ) ↔ ( 𝐵 − 𝑂 ) = ( 𝐵 − ( ( 𝑆 ‘ 𝐴 ) ‘ 𝑂 ) ) ) ) |
| 72 |
43 71
|
mpbid |
⊢ ( 𝜑 → ( 𝐵 − 𝑂 ) = ( 𝐵 − ( ( 𝑆 ‘ 𝐴 ) ‘ 𝑂 ) ) ) |
| 73 |
72
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝑇 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑅 𝐼 𝑂 ) ) ) ) ∧ 𝑠 ∈ 𝑃 ) ∧ ( 𝑥 ∈ ( ( ( 𝑆 ‘ 𝐴 ) ‘ 𝑂 ) 𝐼 𝑠 ) ∧ ( 𝑥 − 𝑠 ) = ( 𝑥 − 𝑅 ) ) ) → ( 𝐵 − 𝑂 ) = ( 𝐵 − ( ( 𝑆 ‘ 𝐴 ) ‘ 𝑂 ) ) ) |
| 74 |
5
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝑇 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑅 𝐼 𝑂 ) ) ) ) ∧ 𝑠 ∈ 𝑃 ) ∧ ( 𝑥 ∈ ( ( ( 𝑆 ‘ 𝐴 ) ‘ 𝑂 ) 𝐼 𝑠 ) ∧ ( 𝑥 − 𝑠 ) = ( 𝑥 − 𝑅 ) ) ) → 𝐺 ∈ TarskiG ) |
| 75 |
|
eqid |
⊢ ( 𝑆 ‘ 𝐴 ) = ( 𝑆 ‘ 𝐴 ) |
| 76 |
1 2 3 4 6 20 24 75 23
|
mircl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝑇 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑅 𝐼 𝑂 ) ) ) ) → ( ( 𝑆 ‘ 𝐴 ) ‘ 𝑂 ) ∈ 𝑃 ) |
| 77 |
76
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝑇 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑅 𝐼 𝑂 ) ) ) ) ∧ 𝑠 ∈ 𝑃 ) ∧ ( 𝑥 ∈ ( ( ( 𝑆 ‘ 𝐴 ) ‘ 𝑂 ) 𝐼 𝑠 ) ∧ ( 𝑥 − 𝑠 ) = ( 𝑥 − 𝑅 ) ) ) → ( ( 𝑆 ‘ 𝐴 ) ‘ 𝑂 ) ∈ 𝑃 ) |
| 78 |
7
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝑇 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑅 𝐼 𝑂 ) ) ) ) ∧ 𝑠 ∈ 𝑃 ) ∧ ( 𝑥 ∈ ( ( ( 𝑆 ‘ 𝐴 ) ‘ 𝑂 ) 𝐼 𝑠 ) ∧ ( 𝑥 − 𝑠 ) = ( 𝑥 − 𝑅 ) ) ) → 𝐴 ∈ 𝑃 ) |
| 79 |
11
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝑇 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑅 𝐼 𝑂 ) ) ) ) ∧ 𝑠 ∈ 𝑃 ) ∧ ( 𝑥 ∈ ( ( ( 𝑆 ‘ 𝐴 ) ‘ 𝑂 ) 𝐼 𝑠 ) ∧ ( 𝑥 − 𝑠 ) = ( 𝑥 − 𝑅 ) ) ) → 𝑂 ∈ 𝑃 ) |
| 80 |
17
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝑇 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑅 𝐼 𝑂 ) ) ) ) ∧ 𝑠 ∈ 𝑃 ) ∧ ( 𝑥 ∈ ( ( ( 𝑆 ‘ 𝐴 ) ‘ 𝑂 ) 𝐼 𝑠 ) ∧ ( 𝑥 − 𝑠 ) = ( 𝑥 − 𝑅 ) ) ) → 𝑅 ∈ 𝑃 ) |
| 81 |
8
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝑇 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑅 𝐼 𝑂 ) ) ) ) ∧ 𝑠 ∈ 𝑃 ) ∧ ( 𝑥 ∈ ( ( ( 𝑆 ‘ 𝐴 ) ‘ 𝑂 ) 𝐼 𝑠 ) ∧ ( 𝑥 − 𝑠 ) = ( 𝑥 − 𝑅 ) ) ) → 𝐵 ∈ 𝑃 ) |
| 82 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝑇 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑅 𝐼 𝑂 ) ) ) ) ∧ 𝑠 ∈ 𝑃 ) ∧ ( 𝑥 ∈ ( ( ( 𝑆 ‘ 𝐴 ) ‘ 𝑂 ) 𝐼 𝑠 ) ∧ ( 𝑥 − 𝑠 ) = ( 𝑥 − 𝑅 ) ) ) → 𝑠 ∈ 𝑃 ) |
| 83 |
1 2 3 4 6 74 78 75 79
|
mirbtwn |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝑇 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑅 𝐼 𝑂 ) ) ) ) ∧ 𝑠 ∈ 𝑃 ) ∧ ( 𝑥 ∈ ( ( ( 𝑆 ‘ 𝐴 ) ‘ 𝑂 ) 𝐼 𝑠 ) ∧ ( 𝑥 − 𝑠 ) = ( 𝑥 − 𝑅 ) ) ) → 𝐴 ∈ ( ( ( 𝑆 ‘ 𝐴 ) ‘ 𝑂 ) 𝐼 𝑂 ) ) |
| 84 |
|
eqid |
⊢ ( 𝑆 ‘ 𝐵 ) = ( 𝑆 ‘ 𝐵 ) |
| 85 |
1 2 3 4 6 74 81 84 82
|
mirbtwn |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝑇 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑅 𝐼 𝑂 ) ) ) ) ∧ 𝑠 ∈ 𝑃 ) ∧ ( 𝑥 ∈ ( ( ( 𝑆 ‘ 𝐴 ) ‘ 𝑂 ) 𝐼 𝑠 ) ∧ ( 𝑥 − 𝑠 ) = ( 𝑥 − 𝑅 ) ) ) → 𝐵 ∈ ( ( ( 𝑆 ‘ 𝐵 ) ‘ 𝑠 ) 𝐼 𝑠 ) ) |
| 86 |
|
simpr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝑇 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑅 𝐼 𝑂 ) ) ) ) ∧ 𝑠 ∈ 𝑃 ) ∧ ( 𝑥 ∈ ( ( ( 𝑆 ‘ 𝐴 ) ‘ 𝑂 ) 𝐼 𝑠 ) ∧ ( 𝑥 − 𝑠 ) = ( 𝑥 − 𝑅 ) ) ) ∧ 𝑚 ∈ 𝑃 ) ∧ 𝑅 = ( ( 𝑆 ‘ 𝑚 ) ‘ 𝑠 ) ) → 𝑅 = ( ( 𝑆 ‘ 𝑚 ) ‘ 𝑠 ) ) |
| 87 |
74
|
ad2antrr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝑇 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑅 𝐼 𝑂 ) ) ) ) ∧ 𝑠 ∈ 𝑃 ) ∧ ( 𝑥 ∈ ( ( ( 𝑆 ‘ 𝐴 ) ‘ 𝑂 ) 𝐼 𝑠 ) ∧ ( 𝑥 − 𝑠 ) = ( 𝑥 − 𝑅 ) ) ) ∧ 𝑚 ∈ 𝑃 ) ∧ 𝑅 = ( ( 𝑆 ‘ 𝑚 ) ‘ 𝑠 ) ) → 𝐺 ∈ TarskiG ) |
| 88 |
78
|
ad2antrr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝑇 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑅 𝐼 𝑂 ) ) ) ) ∧ 𝑠 ∈ 𝑃 ) ∧ ( 𝑥 ∈ ( ( ( 𝑆 ‘ 𝐴 ) ‘ 𝑂 ) 𝐼 𝑠 ) ∧ ( 𝑥 − 𝑠 ) = ( 𝑥 − 𝑅 ) ) ) ∧ 𝑚 ∈ 𝑃 ) ∧ 𝑅 = ( ( 𝑆 ‘ 𝑚 ) ‘ 𝑠 ) ) → 𝐴 ∈ 𝑃 ) |
| 89 |
81
|
ad2antrr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝑇 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑅 𝐼 𝑂 ) ) ) ) ∧ 𝑠 ∈ 𝑃 ) ∧ ( 𝑥 ∈ ( ( ( 𝑆 ‘ 𝐴 ) ‘ 𝑂 ) 𝐼 𝑠 ) ∧ ( 𝑥 − 𝑠 ) = ( 𝑥 − 𝑅 ) ) ) ∧ 𝑚 ∈ 𝑃 ) ∧ 𝑅 = ( ( 𝑆 ‘ 𝑚 ) ‘ 𝑠 ) ) → 𝐵 ∈ 𝑃 ) |
| 90 |
54
|
ad4antr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝑇 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑅 𝐼 𝑂 ) ) ) ) ∧ 𝑠 ∈ 𝑃 ) ∧ ( 𝑥 ∈ ( ( ( 𝑆 ‘ 𝐴 ) ‘ 𝑂 ) 𝐼 𝑠 ) ∧ ( 𝑥 − 𝑠 ) = ( 𝑥 − 𝑅 ) ) ) ∧ 𝑚 ∈ 𝑃 ) ∧ 𝑅 = ( ( 𝑆 ‘ 𝑚 ) ‘ 𝑠 ) ) → 𝐴 ≠ 𝐵 ) |
| 91 |
10
|
ad5antr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝑇 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑅 𝐼 𝑂 ) ) ) ) ∧ 𝑠 ∈ 𝑃 ) ∧ ( 𝑥 ∈ ( ( ( 𝑆 ‘ 𝐴 ) ‘ 𝑂 ) 𝐼 𝑠 ) ∧ ( 𝑥 − 𝑠 ) = ( 𝑥 − 𝑅 ) ) ) ∧ 𝑚 ∈ 𝑃 ) ∧ 𝑅 = ( ( 𝑆 ‘ 𝑚 ) ‘ 𝑠 ) ) → 𝑄 ∈ 𝑃 ) |
| 92 |
79
|
ad2antrr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝑇 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑅 𝐼 𝑂 ) ) ) ) ∧ 𝑠 ∈ 𝑃 ) ∧ ( 𝑥 ∈ ( ( ( 𝑆 ‘ 𝐴 ) ‘ 𝑂 ) 𝐼 𝑠 ) ∧ ( 𝑥 − 𝑠 ) = ( 𝑥 − 𝑅 ) ) ) ∧ 𝑚 ∈ 𝑃 ) ∧ 𝑅 = ( ( 𝑆 ‘ 𝑚 ) ‘ 𝑠 ) ) → 𝑂 ∈ 𝑃 ) |
| 93 |
62
|
ad4antr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝑇 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑅 𝐼 𝑂 ) ) ) ) ∧ 𝑠 ∈ 𝑃 ) ∧ ( 𝑥 ∈ ( ( ( 𝑆 ‘ 𝐴 ) ‘ 𝑂 ) 𝐼 𝑠 ) ∧ ( 𝑥 − 𝑠 ) = ( 𝑥 − 𝑅 ) ) ) ∧ 𝑚 ∈ 𝑃 ) ∧ 𝑅 = ( ( 𝑆 ‘ 𝑚 ) ‘ 𝑠 ) ) → 𝑇 ∈ 𝑃 ) |
| 94 |
13
|
ad5antr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝑇 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑅 𝐼 𝑂 ) ) ) ) ∧ 𝑠 ∈ 𝑃 ) ∧ ( 𝑥 ∈ ( ( ( 𝑆 ‘ 𝐴 ) ‘ 𝑂 ) 𝐼 𝑠 ) ∧ ( 𝑥 − 𝑠 ) = ( 𝑥 − 𝑅 ) ) ) ∧ 𝑚 ∈ 𝑃 ) ∧ 𝑅 = ( ( 𝑆 ‘ 𝑚 ) ‘ 𝑠 ) ) → ( 𝐴 𝐿 𝐵 ) ( ⟂G ‘ 𝐺 ) ( 𝑄 𝐿 𝐵 ) ) |
| 95 |
14
|
ad5antr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝑇 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑅 𝐼 𝑂 ) ) ) ) ∧ 𝑠 ∈ 𝑃 ) ∧ ( 𝑥 ∈ ( ( ( 𝑆 ‘ 𝐴 ) ‘ 𝑂 ) 𝐼 𝑠 ) ∧ ( 𝑥 − 𝑠 ) = ( 𝑥 − 𝑅 ) ) ) ∧ 𝑚 ∈ 𝑃 ) ∧ 𝑅 = ( ( 𝑆 ‘ 𝑚 ) ‘ 𝑠 ) ) → ( 𝐴 𝐿 𝐵 ) ( ⟂G ‘ 𝐺 ) ( 𝐴 𝐿 𝑂 ) ) |
| 96 |
63
|
ad4antr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝑇 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑅 𝐼 𝑂 ) ) ) ) ∧ 𝑠 ∈ 𝑃 ) ∧ ( 𝑥 ∈ ( ( ( 𝑆 ‘ 𝐴 ) ‘ 𝑂 ) 𝐼 𝑠 ) ∧ ( 𝑥 − 𝑠 ) = ( 𝑥 − 𝑅 ) ) ) ∧ 𝑚 ∈ 𝑃 ) ∧ 𝑅 = ( ( 𝑆 ‘ 𝑚 ) ‘ 𝑠 ) ) → 𝑇 ∈ ( 𝐴 𝐿 𝐵 ) ) |
| 97 |
16
|
ad5antr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝑇 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑅 𝐼 𝑂 ) ) ) ) ∧ 𝑠 ∈ 𝑃 ) ∧ ( 𝑥 ∈ ( ( ( 𝑆 ‘ 𝐴 ) ‘ 𝑂 ) 𝐼 𝑠 ) ∧ ( 𝑥 − 𝑠 ) = ( 𝑥 − 𝑅 ) ) ) ∧ 𝑚 ∈ 𝑃 ) ∧ 𝑅 = ( ( 𝑆 ‘ 𝑚 ) ‘ 𝑠 ) ) → 𝑇 ∈ ( 𝑄 𝐼 𝑂 ) ) |
| 98 |
80
|
ad2antrr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝑇 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑅 𝐼 𝑂 ) ) ) ) ∧ 𝑠 ∈ 𝑃 ) ∧ ( 𝑥 ∈ ( ( ( 𝑆 ‘ 𝐴 ) ‘ 𝑂 ) 𝐼 𝑠 ) ∧ ( 𝑥 − 𝑠 ) = ( 𝑥 − 𝑅 ) ) ) ∧ 𝑚 ∈ 𝑃 ) ∧ 𝑅 = ( ( 𝑆 ‘ 𝑚 ) ‘ 𝑠 ) ) → 𝑅 ∈ 𝑃 ) |
| 99 |
18
|
ad5antr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝑇 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑅 𝐼 𝑂 ) ) ) ) ∧ 𝑠 ∈ 𝑃 ) ∧ ( 𝑥 ∈ ( ( ( 𝑆 ‘ 𝐴 ) ‘ 𝑂 ) 𝐼 𝑠 ) ∧ ( 𝑥 − 𝑠 ) = ( 𝑥 − 𝑅 ) ) ) ∧ 𝑚 ∈ 𝑃 ) ∧ 𝑅 = ( ( 𝑆 ‘ 𝑚 ) ‘ 𝑠 ) ) → 𝑅 ∈ ( 𝐵 𝐼 𝑄 ) ) |
| 100 |
19
|
ad5antr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝑇 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑅 𝐼 𝑂 ) ) ) ) ∧ 𝑠 ∈ 𝑃 ) ∧ ( 𝑥 ∈ ( ( ( 𝑆 ‘ 𝐴 ) ‘ 𝑂 ) 𝐼 𝑠 ) ∧ ( 𝑥 − 𝑠 ) = ( 𝑥 − 𝑅 ) ) ) ∧ 𝑚 ∈ 𝑃 ) ∧ 𝑅 = ( ( 𝑆 ‘ 𝑚 ) ‘ 𝑠 ) ) → ( 𝐴 − 𝑂 ) = ( 𝐵 − 𝑅 ) ) |
| 101 |
26
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝑇 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑅 𝐼 𝑂 ) ) ) ) ∧ 𝑠 ∈ 𝑃 ) ∧ ( 𝑥 ∈ ( ( ( 𝑆 ‘ 𝐴 ) ‘ 𝑂 ) 𝐼 𝑠 ) ∧ ( 𝑥 − 𝑠 ) = ( 𝑥 − 𝑅 ) ) ) → 𝑥 ∈ 𝑃 ) |
| 102 |
101
|
ad2antrr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝑇 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑅 𝐼 𝑂 ) ) ) ) ∧ 𝑠 ∈ 𝑃 ) ∧ ( 𝑥 ∈ ( ( ( 𝑆 ‘ 𝐴 ) ‘ 𝑂 ) 𝐼 𝑠 ) ∧ ( 𝑥 − 𝑠 ) = ( 𝑥 − 𝑅 ) ) ) ∧ 𝑚 ∈ 𝑃 ) ∧ 𝑅 = ( ( 𝑆 ‘ 𝑚 ) ‘ 𝑠 ) ) → 𝑥 ∈ 𝑃 ) |
| 103 |
|
simp-5r |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝑇 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑅 𝐼 𝑂 ) ) ) ) ∧ 𝑠 ∈ 𝑃 ) ∧ ( 𝑥 ∈ ( ( ( 𝑆 ‘ 𝐴 ) ‘ 𝑂 ) 𝐼 𝑠 ) ∧ ( 𝑥 − 𝑠 ) = ( 𝑥 − 𝑅 ) ) ) ∧ 𝑚 ∈ 𝑃 ) ∧ 𝑅 = ( ( 𝑆 ‘ 𝑚 ) ‘ 𝑠 ) ) → ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝑇 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑅 𝐼 𝑂 ) ) ) ) |
| 104 |
103
|
simprd |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝑇 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑅 𝐼 𝑂 ) ) ) ) ∧ 𝑠 ∈ 𝑃 ) ∧ ( 𝑥 ∈ ( ( ( 𝑆 ‘ 𝐴 ) ‘ 𝑂 ) 𝐼 𝑠 ) ∧ ( 𝑥 − 𝑠 ) = ( 𝑥 − 𝑅 ) ) ) ∧ 𝑚 ∈ 𝑃 ) ∧ 𝑅 = ( ( 𝑆 ‘ 𝑚 ) ‘ 𝑠 ) ) → ( 𝑥 ∈ ( 𝑇 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑅 𝐼 𝑂 ) ) ) |
| 105 |
104
|
simpld |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝑇 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑅 𝐼 𝑂 ) ) ) ) ∧ 𝑠 ∈ 𝑃 ) ∧ ( 𝑥 ∈ ( ( ( 𝑆 ‘ 𝐴 ) ‘ 𝑂 ) 𝐼 𝑠 ) ∧ ( 𝑥 − 𝑠 ) = ( 𝑥 − 𝑅 ) ) ) ∧ 𝑚 ∈ 𝑃 ) ∧ 𝑅 = ( ( 𝑆 ‘ 𝑚 ) ‘ 𝑠 ) ) → 𝑥 ∈ ( 𝑇 𝐼 𝐵 ) ) |
| 106 |
104
|
simprd |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝑇 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑅 𝐼 𝑂 ) ) ) ) ∧ 𝑠 ∈ 𝑃 ) ∧ ( 𝑥 ∈ ( ( ( 𝑆 ‘ 𝐴 ) ‘ 𝑂 ) 𝐼 𝑠 ) ∧ ( 𝑥 − 𝑠 ) = ( 𝑥 − 𝑅 ) ) ) ∧ 𝑚 ∈ 𝑃 ) ∧ 𝑅 = ( ( 𝑆 ‘ 𝑚 ) ‘ 𝑠 ) ) → 𝑥 ∈ ( 𝑅 𝐼 𝑂 ) ) |
| 107 |
82
|
ad2antrr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝑇 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑅 𝐼 𝑂 ) ) ) ) ∧ 𝑠 ∈ 𝑃 ) ∧ ( 𝑥 ∈ ( ( ( 𝑆 ‘ 𝐴 ) ‘ 𝑂 ) 𝐼 𝑠 ) ∧ ( 𝑥 − 𝑠 ) = ( 𝑥 − 𝑅 ) ) ) ∧ 𝑚 ∈ 𝑃 ) ∧ 𝑅 = ( ( 𝑆 ‘ 𝑚 ) ‘ 𝑠 ) ) → 𝑠 ∈ 𝑃 ) |
| 108 |
|
simpllr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝑇 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑅 𝐼 𝑂 ) ) ) ) ∧ 𝑠 ∈ 𝑃 ) ∧ ( 𝑥 ∈ ( ( ( 𝑆 ‘ 𝐴 ) ‘ 𝑂 ) 𝐼 𝑠 ) ∧ ( 𝑥 − 𝑠 ) = ( 𝑥 − 𝑅 ) ) ) ∧ 𝑚 ∈ 𝑃 ) ∧ 𝑅 = ( ( 𝑆 ‘ 𝑚 ) ‘ 𝑠 ) ) → ( 𝑥 ∈ ( ( ( 𝑆 ‘ 𝐴 ) ‘ 𝑂 ) 𝐼 𝑠 ) ∧ ( 𝑥 − 𝑠 ) = ( 𝑥 − 𝑅 ) ) ) |
| 109 |
108
|
simpld |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝑇 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑅 𝐼 𝑂 ) ) ) ) ∧ 𝑠 ∈ 𝑃 ) ∧ ( 𝑥 ∈ ( ( ( 𝑆 ‘ 𝐴 ) ‘ 𝑂 ) 𝐼 𝑠 ) ∧ ( 𝑥 − 𝑠 ) = ( 𝑥 − 𝑅 ) ) ) ∧ 𝑚 ∈ 𝑃 ) ∧ 𝑅 = ( ( 𝑆 ‘ 𝑚 ) ‘ 𝑠 ) ) → 𝑥 ∈ ( ( ( 𝑆 ‘ 𝐴 ) ‘ 𝑂 ) 𝐼 𝑠 ) ) |
| 110 |
|
simprr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝑇 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑅 𝐼 𝑂 ) ) ) ) ∧ 𝑠 ∈ 𝑃 ) ∧ ( 𝑥 ∈ ( ( ( 𝑆 ‘ 𝐴 ) ‘ 𝑂 ) 𝐼 𝑠 ) ∧ ( 𝑥 − 𝑠 ) = ( 𝑥 − 𝑅 ) ) ) → ( 𝑥 − 𝑠 ) = ( 𝑥 − 𝑅 ) ) |
| 111 |
110
|
ad2antrr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝑇 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑅 𝐼 𝑂 ) ) ) ) ∧ 𝑠 ∈ 𝑃 ) ∧ ( 𝑥 ∈ ( ( ( 𝑆 ‘ 𝐴 ) ‘ 𝑂 ) 𝐼 𝑠 ) ∧ ( 𝑥 − 𝑠 ) = ( 𝑥 − 𝑅 ) ) ) ∧ 𝑚 ∈ 𝑃 ) ∧ 𝑅 = ( ( 𝑆 ‘ 𝑚 ) ‘ 𝑠 ) ) → ( 𝑥 − 𝑠 ) = ( 𝑥 − 𝑅 ) ) |
| 112 |
|
simplr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝑇 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑅 𝐼 𝑂 ) ) ) ) ∧ 𝑠 ∈ 𝑃 ) ∧ ( 𝑥 ∈ ( ( ( 𝑆 ‘ 𝐴 ) ‘ 𝑂 ) 𝐼 𝑠 ) ∧ ( 𝑥 − 𝑠 ) = ( 𝑥 − 𝑅 ) ) ) ∧ 𝑚 ∈ 𝑃 ) ∧ 𝑅 = ( ( 𝑆 ‘ 𝑚 ) ‘ 𝑠 ) ) → 𝑚 ∈ 𝑃 ) |
| 113 |
1 2 3 4 87 6 88 89 90 91 92 93 94 95 96 97 98 99 100 102 105 106 107 109 111 112 86
|
mideulem2 |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝑇 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑅 𝐼 𝑂 ) ) ) ) ∧ 𝑠 ∈ 𝑃 ) ∧ ( 𝑥 ∈ ( ( ( 𝑆 ‘ 𝐴 ) ‘ 𝑂 ) 𝐼 𝑠 ) ∧ ( 𝑥 − 𝑠 ) = ( 𝑥 − 𝑅 ) ) ) ∧ 𝑚 ∈ 𝑃 ) ∧ 𝑅 = ( ( 𝑆 ‘ 𝑚 ) ‘ 𝑠 ) ) → 𝐵 = 𝑚 ) |
| 114 |
113
|
eqcomd |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝑇 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑅 𝐼 𝑂 ) ) ) ) ∧ 𝑠 ∈ 𝑃 ) ∧ ( 𝑥 ∈ ( ( ( 𝑆 ‘ 𝐴 ) ‘ 𝑂 ) 𝐼 𝑠 ) ∧ ( 𝑥 − 𝑠 ) = ( 𝑥 − 𝑅 ) ) ) ∧ 𝑚 ∈ 𝑃 ) ∧ 𝑅 = ( ( 𝑆 ‘ 𝑚 ) ‘ 𝑠 ) ) → 𝑚 = 𝐵 ) |
| 115 |
114
|
fveq2d |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝑇 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑅 𝐼 𝑂 ) ) ) ) ∧ 𝑠 ∈ 𝑃 ) ∧ ( 𝑥 ∈ ( ( ( 𝑆 ‘ 𝐴 ) ‘ 𝑂 ) 𝐼 𝑠 ) ∧ ( 𝑥 − 𝑠 ) = ( 𝑥 − 𝑅 ) ) ) ∧ 𝑚 ∈ 𝑃 ) ∧ 𝑅 = ( ( 𝑆 ‘ 𝑚 ) ‘ 𝑠 ) ) → ( 𝑆 ‘ 𝑚 ) = ( 𝑆 ‘ 𝐵 ) ) |
| 116 |
115
|
fveq1d |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝑇 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑅 𝐼 𝑂 ) ) ) ) ∧ 𝑠 ∈ 𝑃 ) ∧ ( 𝑥 ∈ ( ( ( 𝑆 ‘ 𝐴 ) ‘ 𝑂 ) 𝐼 𝑠 ) ∧ ( 𝑥 − 𝑠 ) = ( 𝑥 − 𝑅 ) ) ) ∧ 𝑚 ∈ 𝑃 ) ∧ 𝑅 = ( ( 𝑆 ‘ 𝑚 ) ‘ 𝑠 ) ) → ( ( 𝑆 ‘ 𝑚 ) ‘ 𝑠 ) = ( ( 𝑆 ‘ 𝐵 ) ‘ 𝑠 ) ) |
| 117 |
86 116
|
eqtrd |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝑇 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑅 𝐼 𝑂 ) ) ) ) ∧ 𝑠 ∈ 𝑃 ) ∧ ( 𝑥 ∈ ( ( ( 𝑆 ‘ 𝐴 ) ‘ 𝑂 ) 𝐼 𝑠 ) ∧ ( 𝑥 − 𝑠 ) = ( 𝑥 − 𝑅 ) ) ) ∧ 𝑚 ∈ 𝑃 ) ∧ 𝑅 = ( ( 𝑆 ‘ 𝑚 ) ‘ 𝑠 ) ) → 𝑅 = ( ( 𝑆 ‘ 𝐵 ) ‘ 𝑠 ) ) |
| 118 |
|
eqid |
⊢ ( 𝑆 ‘ 𝑚 ) = ( 𝑆 ‘ 𝑚 ) |
| 119 |
1 2 3 4 6 74 118 82 80 101 110
|
midexlem |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝑇 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑅 𝐼 𝑂 ) ) ) ) ∧ 𝑠 ∈ 𝑃 ) ∧ ( 𝑥 ∈ ( ( ( 𝑆 ‘ 𝐴 ) ‘ 𝑂 ) 𝐼 𝑠 ) ∧ ( 𝑥 − 𝑠 ) = ( 𝑥 − 𝑅 ) ) ) → ∃ 𝑚 ∈ 𝑃 𝑅 = ( ( 𝑆 ‘ 𝑚 ) ‘ 𝑠 ) ) |
| 120 |
117 119
|
r19.29a |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝑇 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑅 𝐼 𝑂 ) ) ) ) ∧ 𝑠 ∈ 𝑃 ) ∧ ( 𝑥 ∈ ( ( ( 𝑆 ‘ 𝐴 ) ‘ 𝑂 ) 𝐼 𝑠 ) ∧ ( 𝑥 − 𝑠 ) = ( 𝑥 − 𝑅 ) ) ) → 𝑅 = ( ( 𝑆 ‘ 𝐵 ) ‘ 𝑠 ) ) |
| 121 |
120
|
oveq1d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝑇 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑅 𝐼 𝑂 ) ) ) ) ∧ 𝑠 ∈ 𝑃 ) ∧ ( 𝑥 ∈ ( ( ( 𝑆 ‘ 𝐴 ) ‘ 𝑂 ) 𝐼 𝑠 ) ∧ ( 𝑥 − 𝑠 ) = ( 𝑥 − 𝑅 ) ) ) → ( 𝑅 𝐼 𝑠 ) = ( ( ( 𝑆 ‘ 𝐵 ) ‘ 𝑠 ) 𝐼 𝑠 ) ) |
| 122 |
85 121
|
eleqtrrd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝑇 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑅 𝐼 𝑂 ) ) ) ) ∧ 𝑠 ∈ 𝑃 ) ∧ ( 𝑥 ∈ ( ( ( 𝑆 ‘ 𝐴 ) ‘ 𝑂 ) 𝐼 𝑠 ) ∧ ( 𝑥 − 𝑠 ) = ( 𝑥 − 𝑅 ) ) ) → 𝐵 ∈ ( 𝑅 𝐼 𝑠 ) ) |
| 123 |
1 2 3 4 6 74 78 75 79
|
mircgr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝑇 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑅 𝐼 𝑂 ) ) ) ) ∧ 𝑠 ∈ 𝑃 ) ∧ ( 𝑥 ∈ ( ( ( 𝑆 ‘ 𝐴 ) ‘ 𝑂 ) 𝐼 𝑠 ) ∧ ( 𝑥 − 𝑠 ) = ( 𝑥 − 𝑅 ) ) ) → ( 𝐴 − ( ( 𝑆 ‘ 𝐴 ) ‘ 𝑂 ) ) = ( 𝐴 − 𝑂 ) ) |
| 124 |
19
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝑇 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑅 𝐼 𝑂 ) ) ) ) ∧ 𝑠 ∈ 𝑃 ) ∧ ( 𝑥 ∈ ( ( ( 𝑆 ‘ 𝐴 ) ‘ 𝑂 ) 𝐼 𝑠 ) ∧ ( 𝑥 − 𝑠 ) = ( 𝑥 − 𝑅 ) ) ) → ( 𝐴 − 𝑂 ) = ( 𝐵 − 𝑅 ) ) |
| 125 |
123 124
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝑇 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑅 𝐼 𝑂 ) ) ) ) ∧ 𝑠 ∈ 𝑃 ) ∧ ( 𝑥 ∈ ( ( ( 𝑆 ‘ 𝐴 ) ‘ 𝑂 ) 𝐼 𝑠 ) ∧ ( 𝑥 − 𝑠 ) = ( 𝑥 − 𝑅 ) ) ) → ( 𝐴 − ( ( 𝑆 ‘ 𝐴 ) ‘ 𝑂 ) ) = ( 𝐵 − 𝑅 ) ) |
| 126 |
1 2 3 74 78 77 81 80 125
|
tgcgrcomlr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝑇 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑅 𝐼 𝑂 ) ) ) ) ∧ 𝑠 ∈ 𝑃 ) ∧ ( 𝑥 ∈ ( ( ( 𝑆 ‘ 𝐴 ) ‘ 𝑂 ) 𝐼 𝑠 ) ∧ ( 𝑥 − 𝑠 ) = ( 𝑥 − 𝑅 ) ) ) → ( ( ( 𝑆 ‘ 𝐴 ) ‘ 𝑂 ) − 𝐴 ) = ( 𝑅 − 𝐵 ) ) |
| 127 |
120
|
oveq2d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝑇 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑅 𝐼 𝑂 ) ) ) ) ∧ 𝑠 ∈ 𝑃 ) ∧ ( 𝑥 ∈ ( ( ( 𝑆 ‘ 𝐴 ) ‘ 𝑂 ) 𝐼 𝑠 ) ∧ ( 𝑥 − 𝑠 ) = ( 𝑥 − 𝑅 ) ) ) → ( 𝐵 − 𝑅 ) = ( 𝐵 − ( ( 𝑆 ‘ 𝐵 ) ‘ 𝑠 ) ) ) |
| 128 |
1 2 3 4 6 74 81 84 82
|
mircgr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝑇 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑅 𝐼 𝑂 ) ) ) ) ∧ 𝑠 ∈ 𝑃 ) ∧ ( 𝑥 ∈ ( ( ( 𝑆 ‘ 𝐴 ) ‘ 𝑂 ) 𝐼 𝑠 ) ∧ ( 𝑥 − 𝑠 ) = ( 𝑥 − 𝑅 ) ) ) → ( 𝐵 − ( ( 𝑆 ‘ 𝐵 ) ‘ 𝑠 ) ) = ( 𝐵 − 𝑠 ) ) |
| 129 |
124 127 128
|
3eqtrd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝑇 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑅 𝐼 𝑂 ) ) ) ) ∧ 𝑠 ∈ 𝑃 ) ∧ ( 𝑥 ∈ ( ( ( 𝑆 ‘ 𝐴 ) ‘ 𝑂 ) 𝐼 𝑠 ) ∧ ( 𝑥 − 𝑠 ) = ( 𝑥 − 𝑅 ) ) ) → ( 𝐴 − 𝑂 ) = ( 𝐵 − 𝑠 ) ) |
| 130 |
1 2 3 74 77 78 79 80 81 82 83 122 126 129
|
tgcgrextend |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝑇 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑅 𝐼 𝑂 ) ) ) ) ∧ 𝑠 ∈ 𝑃 ) ∧ ( 𝑥 ∈ ( ( ( 𝑆 ‘ 𝐴 ) ‘ 𝑂 ) 𝐼 𝑠 ) ∧ ( 𝑥 − 𝑠 ) = ( 𝑥 − 𝑅 ) ) ) → ( ( ( 𝑆 ‘ 𝐴 ) ‘ 𝑂 ) − 𝑂 ) = ( 𝑅 − 𝑠 ) ) |
| 131 |
1 2 3 74 77 80
|
axtgcgrrflx |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝑇 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑅 𝐼 𝑂 ) ) ) ) ∧ 𝑠 ∈ 𝑃 ) ∧ ( 𝑥 ∈ ( ( ( 𝑆 ‘ 𝐴 ) ‘ 𝑂 ) 𝐼 𝑠 ) ∧ ( 𝑥 − 𝑠 ) = ( 𝑥 − 𝑅 ) ) ) → ( ( ( 𝑆 ‘ 𝐴 ) ‘ 𝑂 ) − 𝑅 ) = ( 𝑅 − ( ( 𝑆 ‘ 𝐴 ) ‘ 𝑂 ) ) ) |
| 132 |
1 2 3 74 79 80
|
axtgcgrrflx |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝑇 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑅 𝐼 𝑂 ) ) ) ) ∧ 𝑠 ∈ 𝑃 ) ∧ ( 𝑥 ∈ ( ( ( 𝑆 ‘ 𝐴 ) ‘ 𝑂 ) 𝐼 𝑠 ) ∧ ( 𝑥 − 𝑠 ) = ( 𝑥 − 𝑅 ) ) ) → ( 𝑂 − 𝑅 ) = ( 𝑅 − 𝑂 ) ) |
| 133 |
60
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝑇 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑅 𝐼 𝑂 ) ) ) ) ∧ 𝑠 ∈ 𝑃 ) ∧ ( 𝑥 ∈ ( ( ( 𝑆 ‘ 𝐴 ) ‘ 𝑂 ) 𝐼 𝑠 ) ∧ ( 𝑥 − 𝑠 ) = ( 𝑥 − 𝑅 ) ) ) → 𝑥 ∈ ( 𝑅 𝐼 𝑂 ) ) |
| 134 |
|
simprl |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝑇 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑅 𝐼 𝑂 ) ) ) ) ∧ 𝑠 ∈ 𝑃 ) ∧ ( 𝑥 ∈ ( ( ( 𝑆 ‘ 𝐴 ) ‘ 𝑂 ) 𝐼 𝑠 ) ∧ ( 𝑥 − 𝑠 ) = ( 𝑥 − 𝑅 ) ) ) → 𝑥 ∈ ( ( ( 𝑆 ‘ 𝐴 ) ‘ 𝑂 ) 𝐼 𝑠 ) ) |
| 135 |
1 2 3 74 77 101 82 134
|
tgbtwncom |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝑇 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑅 𝐼 𝑂 ) ) ) ) ∧ 𝑠 ∈ 𝑃 ) ∧ ( 𝑥 ∈ ( ( ( 𝑆 ‘ 𝐴 ) ‘ 𝑂 ) 𝐼 𝑠 ) ∧ ( 𝑥 − 𝑠 ) = ( 𝑥 − 𝑅 ) ) ) → 𝑥 ∈ ( 𝑠 𝐼 ( ( 𝑆 ‘ 𝐴 ) ‘ 𝑂 ) ) ) |
| 136 |
1 2 3 74 101 82 101 80 110
|
tgcgrcomlr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝑇 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑅 𝐼 𝑂 ) ) ) ) ∧ 𝑠 ∈ 𝑃 ) ∧ ( 𝑥 ∈ ( ( ( 𝑆 ‘ 𝐴 ) ‘ 𝑂 ) 𝐼 𝑠 ) ∧ ( 𝑥 − 𝑠 ) = ( 𝑥 − 𝑅 ) ) ) → ( 𝑠 − 𝑥 ) = ( 𝑅 − 𝑥 ) ) |
| 137 |
136
|
eqcomd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝑇 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑅 𝐼 𝑂 ) ) ) ) ∧ 𝑠 ∈ 𝑃 ) ∧ ( 𝑥 ∈ ( ( ( 𝑆 ‘ 𝐴 ) ‘ 𝑂 ) 𝐼 𝑠 ) ∧ ( 𝑥 − 𝑠 ) = ( 𝑥 − 𝑅 ) ) ) → ( 𝑅 − 𝑥 ) = ( 𝑠 − 𝑥 ) ) |
| 138 |
43
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝑇 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑅 𝐼 𝑂 ) ) ) ) ∧ 𝑠 ∈ 𝑃 ) ∧ ( 𝑥 ∈ ( ( ( 𝑆 ‘ 𝐴 ) ‘ 𝑂 ) 𝐼 𝑠 ) ∧ ( 𝑥 − 𝑠 ) = ( 𝑥 − 𝑅 ) ) ) → 〈“ 𝐵 𝐴 𝑂 ”〉 ∈ ( ∟G ‘ 𝐺 ) ) |
| 139 |
54
|
necomd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝑇 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑅 𝐼 𝑂 ) ) ) ) → 𝐵 ≠ 𝐴 ) |
| 140 |
139
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝑇 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑅 𝐼 𝑂 ) ) ) ) ∧ 𝑠 ∈ 𝑃 ) ∧ ( 𝑥 ∈ ( ( ( 𝑆 ‘ 𝐴 ) ‘ 𝑂 ) 𝐼 𝑠 ) ∧ ( 𝑥 − 𝑠 ) = ( 𝑥 − 𝑅 ) ) ) → 𝐵 ≠ 𝐴 ) |
| 141 |
65
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝑇 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑅 𝐼 𝑂 ) ) ) ) ∧ 𝑠 ∈ 𝑃 ) ∧ ( 𝑥 ∈ ( ( ( 𝑆 ‘ 𝐴 ) ‘ 𝑂 ) 𝐼 𝑠 ) ∧ ( 𝑥 − 𝑠 ) = ( 𝑥 − 𝑅 ) ) ) → 𝑥 ∈ ( 𝐴 𝐿 𝐵 ) ) |
| 142 |
141
|
orcd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝑇 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑅 𝐼 𝑂 ) ) ) ) ∧ 𝑠 ∈ 𝑃 ) ∧ ( 𝑥 ∈ ( ( ( 𝑆 ‘ 𝐴 ) ‘ 𝑂 ) 𝐼 𝑠 ) ∧ ( 𝑥 − 𝑠 ) = ( 𝑥 − 𝑅 ) ) ) → ( 𝑥 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) |
| 143 |
1 4 3 74 78 81 101 142
|
colcom |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝑇 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑅 𝐼 𝑂 ) ) ) ) ∧ 𝑠 ∈ 𝑃 ) ∧ ( 𝑥 ∈ ( ( ( 𝑆 ‘ 𝐴 ) ‘ 𝑂 ) 𝐼 𝑠 ) ∧ ( 𝑥 − 𝑠 ) = ( 𝑥 − 𝑅 ) ) ) → ( 𝑥 ∈ ( 𝐵 𝐿 𝐴 ) ∨ 𝐵 = 𝐴 ) ) |
| 144 |
1 4 3 74 81 78 101 143
|
colrot1 |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝑇 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑅 𝐼 𝑂 ) ) ) ) ∧ 𝑠 ∈ 𝑃 ) ∧ ( 𝑥 ∈ ( ( ( 𝑆 ‘ 𝐴 ) ‘ 𝑂 ) 𝐼 𝑠 ) ∧ ( 𝑥 − 𝑠 ) = ( 𝑥 − 𝑅 ) ) ) → ( 𝐵 ∈ ( 𝐴 𝐿 𝑥 ) ∨ 𝐴 = 𝑥 ) ) |
| 145 |
1 2 3 4 6 74 81 78 79 101 138 140 144
|
ragcol |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝑇 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑅 𝐼 𝑂 ) ) ) ) ∧ 𝑠 ∈ 𝑃 ) ∧ ( 𝑥 ∈ ( ( ( 𝑆 ‘ 𝐴 ) ‘ 𝑂 ) 𝐼 𝑠 ) ∧ ( 𝑥 − 𝑠 ) = ( 𝑥 − 𝑅 ) ) ) → 〈“ 𝑥 𝐴 𝑂 ”〉 ∈ ( ∟G ‘ 𝐺 ) ) |
| 146 |
1 2 3 4 6 74 101 78 79
|
israg |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝑇 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑅 𝐼 𝑂 ) ) ) ) ∧ 𝑠 ∈ 𝑃 ) ∧ ( 𝑥 ∈ ( ( ( 𝑆 ‘ 𝐴 ) ‘ 𝑂 ) 𝐼 𝑠 ) ∧ ( 𝑥 − 𝑠 ) = ( 𝑥 − 𝑅 ) ) ) → ( 〈“ 𝑥 𝐴 𝑂 ”〉 ∈ ( ∟G ‘ 𝐺 ) ↔ ( 𝑥 − 𝑂 ) = ( 𝑥 − ( ( 𝑆 ‘ 𝐴 ) ‘ 𝑂 ) ) ) ) |
| 147 |
145 146
|
mpbid |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝑇 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑅 𝐼 𝑂 ) ) ) ) ∧ 𝑠 ∈ 𝑃 ) ∧ ( 𝑥 ∈ ( ( ( 𝑆 ‘ 𝐴 ) ‘ 𝑂 ) 𝐼 𝑠 ) ∧ ( 𝑥 − 𝑠 ) = ( 𝑥 − 𝑅 ) ) ) → ( 𝑥 − 𝑂 ) = ( 𝑥 − ( ( 𝑆 ‘ 𝐴 ) ‘ 𝑂 ) ) ) |
| 148 |
1 2 3 74 80 101 79 82 101 77 133 135 137 147
|
tgcgrextend |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝑇 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑅 𝐼 𝑂 ) ) ) ) ∧ 𝑠 ∈ 𝑃 ) ∧ ( 𝑥 ∈ ( ( ( 𝑆 ‘ 𝐴 ) ‘ 𝑂 ) 𝐼 𝑠 ) ∧ ( 𝑥 − 𝑠 ) = ( 𝑥 − 𝑅 ) ) ) → ( 𝑅 − 𝑂 ) = ( 𝑠 − ( ( 𝑆 ‘ 𝐴 ) ‘ 𝑂 ) ) ) |
| 149 |
132 148
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝑇 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑅 𝐼 𝑂 ) ) ) ) ∧ 𝑠 ∈ 𝑃 ) ∧ ( 𝑥 ∈ ( ( ( 𝑆 ‘ 𝐴 ) ‘ 𝑂 ) 𝐼 𝑠 ) ∧ ( 𝑥 − 𝑠 ) = ( 𝑥 − 𝑅 ) ) ) → ( 𝑂 − 𝑅 ) = ( 𝑠 − ( ( 𝑆 ‘ 𝐴 ) ‘ 𝑂 ) ) ) |
| 150 |
1 2 3 74 77 78 79 80 80 81 82 77 83 122 130 129 131 149
|
tgifscgr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝑇 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑅 𝐼 𝑂 ) ) ) ) ∧ 𝑠 ∈ 𝑃 ) ∧ ( 𝑥 ∈ ( ( ( 𝑆 ‘ 𝐴 ) ‘ 𝑂 ) 𝐼 𝑠 ) ∧ ( 𝑥 − 𝑠 ) = ( 𝑥 − 𝑅 ) ) ) → ( 𝐴 − 𝑅 ) = ( 𝐵 − ( ( 𝑆 ‘ 𝐴 ) ‘ 𝑂 ) ) ) |
| 151 |
73 150
|
eqtr4d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝑇 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑅 𝐼 𝑂 ) ) ) ) ∧ 𝑠 ∈ 𝑃 ) ∧ ( 𝑥 ∈ ( ( ( 𝑆 ‘ 𝐴 ) ‘ 𝑂 ) 𝐼 𝑠 ) ∧ ( 𝑥 − 𝑠 ) = ( 𝑥 − 𝑅 ) ) ) → ( 𝐵 − 𝑂 ) = ( 𝐴 − 𝑅 ) ) |
| 152 |
1 2 3 20 76 26 26 25
|
axtgsegcon |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝑇 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑅 𝐼 𝑂 ) ) ) ) → ∃ 𝑠 ∈ 𝑃 ( 𝑥 ∈ ( ( ( 𝑆 ‘ 𝐴 ) ‘ 𝑂 ) 𝐼 𝑠 ) ∧ ( 𝑥 − 𝑠 ) = ( 𝑥 − 𝑅 ) ) ) |
| 153 |
151 152
|
r19.29a |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝑇 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑅 𝐼 𝑂 ) ) ) ) → ( 𝐵 − 𝑂 ) = ( 𝐴 − 𝑅 ) ) |
| 154 |
19
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝑇 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑅 𝐼 𝑂 ) ) ) ) → ( 𝐴 − 𝑂 ) = ( 𝐵 − 𝑅 ) ) |
| 155 |
1 2 3 20 24 23 22 25 154
|
tgcgrcomlr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝑇 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑅 𝐼 𝑂 ) ) ) ) → ( 𝑂 − 𝐴 ) = ( 𝑅 − 𝐵 ) ) |
| 156 |
143 152
|
r19.29a |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝑇 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑅 𝐼 𝑂 ) ) ) ) → ( 𝑥 ∈ ( 𝐵 𝐿 𝐴 ) ∨ 𝐵 = 𝐴 ) ) |
| 157 |
1 4 3 20 23 25 26 61
|
btwncolg1 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝑇 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑅 𝐼 𝑂 ) ) ) ) → ( 𝑥 ∈ ( 𝑂 𝐿 𝑅 ) ∨ 𝑂 = 𝑅 ) ) |
| 158 |
1 2 3 4 6 20 21 22 23 24 25 26 59 70 153 155 156 157
|
symquadlem |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝑇 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑅 𝐼 𝑂 ) ) ) ) → 𝐵 = ( ( 𝑆 ‘ 𝑥 ) ‘ 𝐴 ) ) |
| 159 |
1 2 3 4 6 20 26 21 24
|
mirbtwn |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝑇 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑅 𝐼 𝑂 ) ) ) ) → 𝑥 ∈ ( ( ( 𝑆 ‘ 𝑥 ) ‘ 𝐴 ) 𝐼 𝐴 ) ) |
| 160 |
158
|
oveq1d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝑇 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑅 𝐼 𝑂 ) ) ) ) → ( 𝐵 𝐼 𝐴 ) = ( ( ( 𝑆 ‘ 𝑥 ) ‘ 𝐴 ) 𝐼 𝐴 ) ) |
| 161 |
159 160
|
eleqtrrd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝑇 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑅 𝐼 𝑂 ) ) ) ) → 𝑥 ∈ ( 𝐵 𝐼 𝐴 ) ) |
| 162 |
1 2 3 20 22 26 24 161
|
tgbtwncom |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝑇 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑅 𝐼 𝑂 ) ) ) ) → 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ) |
| 163 |
1 2 3 20 24 22
|
axtgcgrrflx |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝑇 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑅 𝐼 𝑂 ) ) ) ) → ( 𝐴 − 𝐵 ) = ( 𝐵 − 𝐴 ) ) |
| 164 |
158
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝑇 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑅 𝐼 𝑂 ) ) ) ) → ( 𝑥 − 𝐵 ) = ( 𝑥 − ( ( 𝑆 ‘ 𝑥 ) ‘ 𝐴 ) ) ) |
| 165 |
1 2 3 4 6 20 26 21 24
|
mircgr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝑇 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑅 𝐼 𝑂 ) ) ) ) → ( 𝑥 − ( ( 𝑆 ‘ 𝑥 ) ‘ 𝐴 ) ) = ( 𝑥 − 𝐴 ) ) |
| 166 |
164 165
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝑇 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑅 𝐼 𝑂 ) ) ) ) → ( 𝑥 − 𝐵 ) = ( 𝑥 − 𝐴 ) ) |
| 167 |
1 2 3 20 24 26 22 23 22 26 24 25 162 161 163 166 154 153
|
tgifscgr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝑇 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑅 𝐼 𝑂 ) ) ) ) → ( 𝑥 − 𝑂 ) = ( 𝑥 − 𝑅 ) ) |
| 168 |
1 2 3 4 6 20 26 21 25 23 167 61
|
ismir |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝑇 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑅 𝐼 𝑂 ) ) ) ) → 𝑂 = ( ( 𝑆 ‘ 𝑥 ) ‘ 𝑅 ) ) |
| 169 |
158 168
|
jca |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝑇 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑅 𝐼 𝑂 ) ) ) ) → ( 𝐵 = ( ( 𝑆 ‘ 𝑥 ) ‘ 𝐴 ) ∧ 𝑂 = ( ( 𝑆 ‘ 𝑥 ) ‘ 𝑅 ) ) ) |
| 170 |
1 2 3 5 10 12 11 16
|
tgbtwncom |
⊢ ( 𝜑 → 𝑇 ∈ ( 𝑂 𝐼 𝑄 ) ) |
| 171 |
1 2 3 5 11 8 10 12 17 170 18
|
axtgpasch |
⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝑃 ( 𝑥 ∈ ( 𝑇 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑅 𝐼 𝑂 ) ) ) |
| 172 |
169 171
|
reximddv |
⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝑃 ( 𝐵 = ( ( 𝑆 ‘ 𝑥 ) ‘ 𝐴 ) ∧ 𝑂 = ( ( 𝑆 ‘ 𝑥 ) ‘ 𝑅 ) ) ) |