| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mirval.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
| 2 |
|
mirval.d |
⊢ − = ( dist ‘ 𝐺 ) |
| 3 |
|
mirval.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
| 4 |
|
mirval.l |
⊢ 𝐿 = ( LineG ‘ 𝐺 ) |
| 5 |
|
mirval.s |
⊢ 𝑆 = ( pInvG ‘ 𝐺 ) |
| 6 |
|
mirval.g |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
| 7 |
|
midexlem.m |
⊢ 𝑀 = ( 𝑆 ‘ 𝑥 ) |
| 8 |
|
midexlem.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑃 ) |
| 9 |
|
midexlem.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑃 ) |
| 10 |
|
midexlem.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝑃 ) |
| 11 |
|
midexlem.1 |
⊢ ( 𝜑 → ( 𝐶 − 𝐴 ) = ( 𝐶 − 𝐵 ) ) |
| 12 |
|
fveq2 |
⊢ ( 𝑥 = 𝐶 → ( 𝑆 ‘ 𝑥 ) = ( 𝑆 ‘ 𝐶 ) ) |
| 13 |
7 12
|
eqtrid |
⊢ ( 𝑥 = 𝐶 → 𝑀 = ( 𝑆 ‘ 𝐶 ) ) |
| 14 |
13
|
fveq1d |
⊢ ( 𝑥 = 𝐶 → ( 𝑀 ‘ 𝐴 ) = ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐴 ) ) |
| 15 |
14
|
rspceeqv |
⊢ ( ( 𝐶 ∈ 𝑃 ∧ 𝐵 = ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐴 ) ) → ∃ 𝑥 ∈ 𝑃 𝐵 = ( 𝑀 ‘ 𝐴 ) ) |
| 16 |
10 15
|
sylan |
⊢ ( ( 𝜑 ∧ 𝐵 = ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐴 ) ) → ∃ 𝑥 ∈ 𝑃 𝐵 = ( 𝑀 ‘ 𝐴 ) ) |
| 17 |
16
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) ∧ 𝐵 = ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐴 ) ) → ∃ 𝑥 ∈ 𝑃 𝐵 = ( 𝑀 ‘ 𝐴 ) ) |
| 18 |
|
eqid |
⊢ ( 𝑆 ‘ 𝐴 ) = ( 𝑆 ‘ 𝐴 ) |
| 19 |
1 2 3 4 5 6 8 18
|
mircinv |
⊢ ( 𝜑 → ( ( 𝑆 ‘ 𝐴 ) ‘ 𝐴 ) = 𝐴 ) |
| 20 |
19
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 = 𝐵 ) → ( ( 𝑆 ‘ 𝐴 ) ‘ 𝐴 ) = 𝐴 ) |
| 21 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐴 = 𝐵 ) → 𝐴 = 𝐵 ) |
| 22 |
20 21
|
eqtr2d |
⊢ ( ( 𝜑 ∧ 𝐴 = 𝐵 ) → 𝐵 = ( ( 𝑆 ‘ 𝐴 ) ‘ 𝐴 ) ) |
| 23 |
|
fveq2 |
⊢ ( 𝑥 = 𝐴 → ( 𝑆 ‘ 𝑥 ) = ( 𝑆 ‘ 𝐴 ) ) |
| 24 |
7 23
|
eqtrid |
⊢ ( 𝑥 = 𝐴 → 𝑀 = ( 𝑆 ‘ 𝐴 ) ) |
| 25 |
24
|
fveq1d |
⊢ ( 𝑥 = 𝐴 → ( 𝑀 ‘ 𝐴 ) = ( ( 𝑆 ‘ 𝐴 ) ‘ 𝐴 ) ) |
| 26 |
25
|
rspceeqv |
⊢ ( ( 𝐴 ∈ 𝑃 ∧ 𝐵 = ( ( 𝑆 ‘ 𝐴 ) ‘ 𝐴 ) ) → ∃ 𝑥 ∈ 𝑃 𝐵 = ( 𝑀 ‘ 𝐴 ) ) |
| 27 |
8 22 26
|
syl2an2r |
⊢ ( ( 𝜑 ∧ 𝐴 = 𝐵 ) → ∃ 𝑥 ∈ 𝑃 𝐵 = ( 𝑀 ‘ 𝐴 ) ) |
| 28 |
27
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) ∧ 𝐴 = 𝐵 ) → ∃ 𝑥 ∈ 𝑃 𝐵 = ( 𝑀 ‘ 𝐴 ) ) |
| 29 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) → 𝐺 ∈ TarskiG ) |
| 30 |
|
eqid |
⊢ ( 𝑆 ‘ 𝐶 ) = ( 𝑆 ‘ 𝐶 ) |
| 31 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) → 𝐴 ∈ 𝑃 ) |
| 32 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) → 𝐵 ∈ 𝑃 ) |
| 33 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) → 𝐶 ∈ 𝑃 ) |
| 34 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) → ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) |
| 35 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) → ( 𝐶 − 𝐴 ) = ( 𝐶 − 𝐵 ) ) |
| 36 |
1 2 3 4 5 29 30 31 32 33 34 35
|
colmid |
⊢ ( ( 𝜑 ∧ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) → ( 𝐵 = ( ( 𝑆 ‘ 𝐶 ) ‘ 𝐴 ) ∨ 𝐴 = 𝐵 ) ) |
| 37 |
17 28 36
|
mpjaodan |
⊢ ( ( 𝜑 ∧ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) → ∃ 𝑥 ∈ 𝑃 𝐵 = ( 𝑀 ‘ 𝐴 ) ) |
| 38 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) → 𝐺 ∈ TarskiG ) |
| 39 |
38
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ ¬ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝐴 ∈ ( 𝐶 𝐼 𝑝 ) ∧ 𝐴 ≠ 𝑝 ) ) → 𝐺 ∈ TarskiG ) |
| 40 |
39
|
ad2antrr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ¬ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝐴 ∈ ( 𝐶 𝐼 𝑝 ) ∧ 𝐴 ≠ 𝑝 ) ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝐵 ∈ ( 𝐶 𝐼 𝑞 ) ∧ ( 𝐵 − 𝑞 ) = ( 𝐴 − 𝑝 ) ) ) → 𝐺 ∈ TarskiG ) |
| 41 |
40
|
ad2antrr |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ ¬ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝐴 ∈ ( 𝐶 𝐼 𝑝 ) ∧ 𝐴 ≠ 𝑝 ) ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝐵 ∈ ( 𝐶 𝐼 𝑞 ) ∧ ( 𝐵 − 𝑞 ) = ( 𝐴 − 𝑝 ) ) ) ∧ 𝑟 ∈ 𝑃 ) ∧ ( 𝑟 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 𝑟 ∈ ( 𝐵 𝐼 𝑝 ) ) ) → 𝐺 ∈ TarskiG ) |
| 42 |
41
|
adantr |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ ¬ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝐴 ∈ ( 𝐶 𝐼 𝑝 ) ∧ 𝐴 ≠ 𝑝 ) ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝐵 ∈ ( 𝐶 𝐼 𝑞 ) ∧ ( 𝐵 − 𝑞 ) = ( 𝐴 − 𝑝 ) ) ) ∧ 𝑟 ∈ 𝑃 ) ∧ ( 𝑟 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 𝑟 ∈ ( 𝐵 𝐼 𝑝 ) ) ) ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑟 𝐼 𝐶 ) ) ) ) → 𝐺 ∈ TarskiG ) |
| 43 |
|
simprl |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ ¬ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝐴 ∈ ( 𝐶 𝐼 𝑝 ) ∧ 𝐴 ≠ 𝑝 ) ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝐵 ∈ ( 𝐶 𝐼 𝑞 ) ∧ ( 𝐵 − 𝑞 ) = ( 𝐴 − 𝑝 ) ) ) ∧ 𝑟 ∈ 𝑃 ) ∧ ( 𝑟 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 𝑟 ∈ ( 𝐵 𝐼 𝑝 ) ) ) ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑟 𝐼 𝐶 ) ) ) ) → 𝑥 ∈ 𝑃 ) |
| 44 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) → 𝐴 ∈ 𝑃 ) |
| 45 |
44
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ ¬ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝐴 ∈ ( 𝐶 𝐼 𝑝 ) ∧ 𝐴 ≠ 𝑝 ) ) → 𝐴 ∈ 𝑃 ) |
| 46 |
45
|
ad2antrr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ¬ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝐴 ∈ ( 𝐶 𝐼 𝑝 ) ∧ 𝐴 ≠ 𝑝 ) ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝐵 ∈ ( 𝐶 𝐼 𝑞 ) ∧ ( 𝐵 − 𝑞 ) = ( 𝐴 − 𝑝 ) ) ) → 𝐴 ∈ 𝑃 ) |
| 47 |
46
|
ad2antrr |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ ¬ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝐴 ∈ ( 𝐶 𝐼 𝑝 ) ∧ 𝐴 ≠ 𝑝 ) ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝐵 ∈ ( 𝐶 𝐼 𝑞 ) ∧ ( 𝐵 − 𝑞 ) = ( 𝐴 − 𝑝 ) ) ) ∧ 𝑟 ∈ 𝑃 ) ∧ ( 𝑟 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 𝑟 ∈ ( 𝐵 𝐼 𝑝 ) ) ) → 𝐴 ∈ 𝑃 ) |
| 48 |
47
|
adantr |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ ¬ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝐴 ∈ ( 𝐶 𝐼 𝑝 ) ∧ 𝐴 ≠ 𝑝 ) ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝐵 ∈ ( 𝐶 𝐼 𝑞 ) ∧ ( 𝐵 − 𝑞 ) = ( 𝐴 − 𝑝 ) ) ) ∧ 𝑟 ∈ 𝑃 ) ∧ ( 𝑟 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 𝑟 ∈ ( 𝐵 𝐼 𝑝 ) ) ) ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑟 𝐼 𝐶 ) ) ) ) → 𝐴 ∈ 𝑃 ) |
| 49 |
9
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ¬ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝐴 ∈ ( 𝐶 𝐼 𝑝 ) ∧ 𝐴 ≠ 𝑝 ) ) → 𝐵 ∈ 𝑃 ) |
| 50 |
49
|
ad2antrr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ¬ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝐴 ∈ ( 𝐶 𝐼 𝑝 ) ∧ 𝐴 ≠ 𝑝 ) ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝐵 ∈ ( 𝐶 𝐼 𝑞 ) ∧ ( 𝐵 − 𝑞 ) = ( 𝐴 − 𝑝 ) ) ) → 𝐵 ∈ 𝑃 ) |
| 51 |
50
|
ad2antrr |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ ¬ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝐴 ∈ ( 𝐶 𝐼 𝑝 ) ∧ 𝐴 ≠ 𝑝 ) ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝐵 ∈ ( 𝐶 𝐼 𝑞 ) ∧ ( 𝐵 − 𝑞 ) = ( 𝐴 − 𝑝 ) ) ) ∧ 𝑟 ∈ 𝑃 ) ∧ ( 𝑟 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 𝑟 ∈ ( 𝐵 𝐼 𝑝 ) ) ) → 𝐵 ∈ 𝑃 ) |
| 52 |
51
|
adantr |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ ¬ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝐴 ∈ ( 𝐶 𝐼 𝑝 ) ∧ 𝐴 ≠ 𝑝 ) ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝐵 ∈ ( 𝐶 𝐼 𝑞 ) ∧ ( 𝐵 − 𝑞 ) = ( 𝐴 − 𝑝 ) ) ) ∧ 𝑟 ∈ 𝑃 ) ∧ ( 𝑟 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 𝑟 ∈ ( 𝐵 𝐼 𝑝 ) ) ) ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑟 𝐼 𝐶 ) ) ) ) → 𝐵 ∈ 𝑃 ) |
| 53 |
42
|
ad2antrr |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ¬ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝐴 ∈ ( 𝐶 𝐼 𝑝 ) ∧ 𝐴 ≠ 𝑝 ) ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝐵 ∈ ( 𝐶 𝐼 𝑞 ) ∧ ( 𝐵 − 𝑞 ) = ( 𝐴 − 𝑝 ) ) ) ∧ 𝑟 ∈ 𝑃 ) ∧ ( 𝑟 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 𝑟 ∈ ( 𝐵 𝐼 𝑝 ) ) ) ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑟 𝐼 𝐶 ) ) ) ) ∧ 𝑠 ∈ 𝑃 ) ∧ ( 𝑠 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 〈“ 𝐵 𝑟 𝑝 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐴 𝑠 𝑞 ”〉 ) ) → 𝐺 ∈ TarskiG ) |
| 54 |
|
simpllr |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ ¬ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝐴 ∈ ( 𝐶 𝐼 𝑝 ) ∧ 𝐴 ≠ 𝑝 ) ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝐵 ∈ ( 𝐶 𝐼 𝑞 ) ∧ ( 𝐵 − 𝑞 ) = ( 𝐴 − 𝑝 ) ) ) ∧ 𝑟 ∈ 𝑃 ) ∧ ( 𝑟 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 𝑟 ∈ ( 𝐵 𝐼 𝑝 ) ) ) ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑟 𝐼 𝐶 ) ) ) ) → 𝑟 ∈ 𝑃 ) |
| 55 |
54
|
ad2antrr |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ¬ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝐴 ∈ ( 𝐶 𝐼 𝑝 ) ∧ 𝐴 ≠ 𝑝 ) ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝐵 ∈ ( 𝐶 𝐼 𝑞 ) ∧ ( 𝐵 − 𝑞 ) = ( 𝐴 − 𝑝 ) ) ) ∧ 𝑟 ∈ 𝑃 ) ∧ ( 𝑟 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 𝑟 ∈ ( 𝐵 𝐼 𝑝 ) ) ) ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑟 𝐼 𝐶 ) ) ) ) ∧ 𝑠 ∈ 𝑃 ) ∧ ( 𝑠 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 〈“ 𝐵 𝑟 𝑝 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐴 𝑠 𝑞 ”〉 ) ) → 𝑟 ∈ 𝑃 ) |
| 56 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) → 𝐶 ∈ 𝑃 ) |
| 57 |
56
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ ¬ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝐴 ∈ ( 𝐶 𝐼 𝑝 ) ∧ 𝐴 ≠ 𝑝 ) ) → 𝐶 ∈ 𝑃 ) |
| 58 |
57
|
ad2antrr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ¬ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝐴 ∈ ( 𝐶 𝐼 𝑝 ) ∧ 𝐴 ≠ 𝑝 ) ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝐵 ∈ ( 𝐶 𝐼 𝑞 ) ∧ ( 𝐵 − 𝑞 ) = ( 𝐴 − 𝑝 ) ) ) → 𝐶 ∈ 𝑃 ) |
| 59 |
58
|
ad2antrr |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ ¬ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝐴 ∈ ( 𝐶 𝐼 𝑝 ) ∧ 𝐴 ≠ 𝑝 ) ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝐵 ∈ ( 𝐶 𝐼 𝑞 ) ∧ ( 𝐵 − 𝑞 ) = ( 𝐴 − 𝑝 ) ) ) ∧ 𝑟 ∈ 𝑃 ) ∧ ( 𝑟 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 𝑟 ∈ ( 𝐵 𝐼 𝑝 ) ) ) → 𝐶 ∈ 𝑃 ) |
| 60 |
59
|
adantr |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ ¬ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝐴 ∈ ( 𝐶 𝐼 𝑝 ) ∧ 𝐴 ≠ 𝑝 ) ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝐵 ∈ ( 𝐶 𝐼 𝑞 ) ∧ ( 𝐵 − 𝑞 ) = ( 𝐴 − 𝑝 ) ) ) ∧ 𝑟 ∈ 𝑃 ) ∧ ( 𝑟 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 𝑟 ∈ ( 𝐵 𝐼 𝑝 ) ) ) ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑟 𝐼 𝐶 ) ) ) ) → 𝐶 ∈ 𝑃 ) |
| 61 |
60
|
ad2antrr |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ¬ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝐴 ∈ ( 𝐶 𝐼 𝑝 ) ∧ 𝐴 ≠ 𝑝 ) ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝐵 ∈ ( 𝐶 𝐼 𝑞 ) ∧ ( 𝐵 − 𝑞 ) = ( 𝐴 − 𝑝 ) ) ) ∧ 𝑟 ∈ 𝑃 ) ∧ ( 𝑟 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 𝑟 ∈ ( 𝐵 𝐼 𝑝 ) ) ) ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑟 𝐼 𝐶 ) ) ) ) ∧ 𝑠 ∈ 𝑃 ) ∧ ( 𝑠 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 〈“ 𝐵 𝑟 𝑝 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐴 𝑠 𝑞 ”〉 ) ) → 𝐶 ∈ 𝑃 ) |
| 62 |
43
|
ad2antrr |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ¬ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝐴 ∈ ( 𝐶 𝐼 𝑝 ) ∧ 𝐴 ≠ 𝑝 ) ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝐵 ∈ ( 𝐶 𝐼 𝑞 ) ∧ ( 𝐵 − 𝑞 ) = ( 𝐴 − 𝑝 ) ) ) ∧ 𝑟 ∈ 𝑃 ) ∧ ( 𝑟 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 𝑟 ∈ ( 𝐵 𝐼 𝑝 ) ) ) ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑟 𝐼 𝐶 ) ) ) ) ∧ 𝑠 ∈ 𝑃 ) ∧ ( 𝑠 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 〈“ 𝐵 𝑟 𝑝 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐴 𝑠 𝑞 ”〉 ) ) → 𝑥 ∈ 𝑃 ) |
| 63 |
|
eqid |
⊢ ( cgrG ‘ 𝐺 ) = ( cgrG ‘ 𝐺 ) |
| 64 |
52
|
ad2antrr |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ¬ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝐴 ∈ ( 𝐶 𝐼 𝑝 ) ∧ 𝐴 ≠ 𝑝 ) ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝐵 ∈ ( 𝐶 𝐼 𝑞 ) ∧ ( 𝐵 − 𝑞 ) = ( 𝐴 − 𝑝 ) ) ) ∧ 𝑟 ∈ 𝑃 ) ∧ ( 𝑟 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 𝑟 ∈ ( 𝐵 𝐼 𝑝 ) ) ) ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑟 𝐼 𝐶 ) ) ) ) ∧ 𝑠 ∈ 𝑃 ) ∧ ( 𝑠 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 〈“ 𝐵 𝑟 𝑝 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐴 𝑠 𝑞 ”〉 ) ) → 𝐵 ∈ 𝑃 ) |
| 65 |
48
|
ad2antrr |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ¬ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝐴 ∈ ( 𝐶 𝐼 𝑝 ) ∧ 𝐴 ≠ 𝑝 ) ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝐵 ∈ ( 𝐶 𝐼 𝑞 ) ∧ ( 𝐵 − 𝑞 ) = ( 𝐴 − 𝑝 ) ) ) ∧ 𝑟 ∈ 𝑃 ) ∧ ( 𝑟 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 𝑟 ∈ ( 𝐵 𝐼 𝑝 ) ) ) ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑟 𝐼 𝐶 ) ) ) ) ∧ 𝑠 ∈ 𝑃 ) ∧ ( 𝑠 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 〈“ 𝐵 𝑟 𝑝 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐴 𝑠 𝑞 ”〉 ) ) → 𝐴 ∈ 𝑃 ) |
| 66 |
|
simpr |
⊢ ( ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ¬ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝐴 ∈ ( 𝐶 𝐼 𝑝 ) ∧ 𝐴 ≠ 𝑝 ) ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝐵 ∈ ( 𝐶 𝐼 𝑞 ) ∧ ( 𝐵 − 𝑞 ) = ( 𝐴 − 𝑝 ) ) ) ∧ 𝑟 ∈ 𝑃 ) ∧ ( 𝑟 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 𝑟 ∈ ( 𝐵 𝐼 𝑝 ) ) ) ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑟 𝐼 𝐶 ) ) ) ) ∧ 𝑠 ∈ 𝑃 ) ∧ ( 𝑠 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 〈“ 𝐵 𝑟 𝑝 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐴 𝑠 𝑞 ”〉 ) ) ∧ 𝑟 = 𝐴 ) → 𝑟 = 𝐴 ) |
| 67 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) → 𝐵 ∈ 𝑃 ) |
| 68 |
|
simpr |
⊢ ( ( 𝜑 ∧ ¬ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) → ¬ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) |
| 69 |
1 3 4 38 56 44 67 68
|
ncolne1 |
⊢ ( ( 𝜑 ∧ ¬ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) → 𝐶 ≠ 𝐴 ) |
| 70 |
69
|
ad7antr |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ ¬ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝐴 ∈ ( 𝐶 𝐼 𝑝 ) ∧ 𝐴 ≠ 𝑝 ) ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝐵 ∈ ( 𝐶 𝐼 𝑞 ) ∧ ( 𝐵 − 𝑞 ) = ( 𝐴 − 𝑝 ) ) ) ∧ 𝑟 ∈ 𝑃 ) ∧ ( 𝑟 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 𝑟 ∈ ( 𝐵 𝐼 𝑝 ) ) ) ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑟 𝐼 𝐶 ) ) ) ) → 𝐶 ≠ 𝐴 ) |
| 71 |
70
|
ad2antrr |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ¬ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝐴 ∈ ( 𝐶 𝐼 𝑝 ) ∧ 𝐴 ≠ 𝑝 ) ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝐵 ∈ ( 𝐶 𝐼 𝑞 ) ∧ ( 𝐵 − 𝑞 ) = ( 𝐴 − 𝑝 ) ) ) ∧ 𝑟 ∈ 𝑃 ) ∧ ( 𝑟 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 𝑟 ∈ ( 𝐵 𝐼 𝑝 ) ) ) ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑟 𝐼 𝐶 ) ) ) ) ∧ 𝑠 ∈ 𝑃 ) ∧ ( 𝑠 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 〈“ 𝐵 𝑟 𝑝 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐴 𝑠 𝑞 ”〉 ) ) → 𝐶 ≠ 𝐴 ) |
| 72 |
71
|
adantr |
⊢ ( ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ¬ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝐴 ∈ ( 𝐶 𝐼 𝑝 ) ∧ 𝐴 ≠ 𝑝 ) ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝐵 ∈ ( 𝐶 𝐼 𝑞 ) ∧ ( 𝐵 − 𝑞 ) = ( 𝐴 − 𝑝 ) ) ) ∧ 𝑟 ∈ 𝑃 ) ∧ ( 𝑟 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 𝑟 ∈ ( 𝐵 𝐼 𝑝 ) ) ) ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑟 𝐼 𝐶 ) ) ) ) ∧ 𝑠 ∈ 𝑃 ) ∧ ( 𝑠 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 〈“ 𝐵 𝑟 𝑝 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐴 𝑠 𝑞 ”〉 ) ) ∧ 𝑟 = 𝐴 ) → 𝐶 ≠ 𝐴 ) |
| 73 |
72
|
necomd |
⊢ ( ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ¬ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝐴 ∈ ( 𝐶 𝐼 𝑝 ) ∧ 𝐴 ≠ 𝑝 ) ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝐵 ∈ ( 𝐶 𝐼 𝑞 ) ∧ ( 𝐵 − 𝑞 ) = ( 𝐴 − 𝑝 ) ) ) ∧ 𝑟 ∈ 𝑃 ) ∧ ( 𝑟 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 𝑟 ∈ ( 𝐵 𝐼 𝑝 ) ) ) ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑟 𝐼 𝐶 ) ) ) ) ∧ 𝑠 ∈ 𝑃 ) ∧ ( 𝑠 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 〈“ 𝐵 𝑟 𝑝 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐴 𝑠 𝑞 ”〉 ) ) ∧ 𝑟 = 𝐴 ) → 𝐴 ≠ 𝐶 ) |
| 74 |
66 73
|
eqnetrd |
⊢ ( ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ¬ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝐴 ∈ ( 𝐶 𝐼 𝑝 ) ∧ 𝐴 ≠ 𝑝 ) ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝐵 ∈ ( 𝐶 𝐼 𝑞 ) ∧ ( 𝐵 − 𝑞 ) = ( 𝐴 − 𝑝 ) ) ) ∧ 𝑟 ∈ 𝑃 ) ∧ ( 𝑟 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 𝑟 ∈ ( 𝐵 𝐼 𝑝 ) ) ) ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑟 𝐼 𝐶 ) ) ) ) ∧ 𝑠 ∈ 𝑃 ) ∧ ( 𝑠 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 〈“ 𝐵 𝑟 𝑝 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐴 𝑠 𝑞 ”〉 ) ) ∧ 𝑟 = 𝐴 ) → 𝑟 ≠ 𝐶 ) |
| 75 |
53
|
adantr |
⊢ ( ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ¬ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝐴 ∈ ( 𝐶 𝐼 𝑝 ) ∧ 𝐴 ≠ 𝑝 ) ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝐵 ∈ ( 𝐶 𝐼 𝑞 ) ∧ ( 𝐵 − 𝑞 ) = ( 𝐴 − 𝑝 ) ) ) ∧ 𝑟 ∈ 𝑃 ) ∧ ( 𝑟 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 𝑟 ∈ ( 𝐵 𝐼 𝑝 ) ) ) ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑟 𝐼 𝐶 ) ) ) ) ∧ 𝑠 ∈ 𝑃 ) ∧ ( 𝑠 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 〈“ 𝐵 𝑟 𝑝 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐴 𝑠 𝑞 ”〉 ) ) ∧ 𝑟 ≠ 𝐴 ) → 𝐺 ∈ TarskiG ) |
| 76 |
55
|
adantr |
⊢ ( ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ¬ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝐴 ∈ ( 𝐶 𝐼 𝑝 ) ∧ 𝐴 ≠ 𝑝 ) ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝐵 ∈ ( 𝐶 𝐼 𝑞 ) ∧ ( 𝐵 − 𝑞 ) = ( 𝐴 − 𝑝 ) ) ) ∧ 𝑟 ∈ 𝑃 ) ∧ ( 𝑟 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 𝑟 ∈ ( 𝐵 𝐼 𝑝 ) ) ) ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑟 𝐼 𝐶 ) ) ) ) ∧ 𝑠 ∈ 𝑃 ) ∧ ( 𝑠 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 〈“ 𝐵 𝑟 𝑝 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐴 𝑠 𝑞 ”〉 ) ) ∧ 𝑟 ≠ 𝐴 ) → 𝑟 ∈ 𝑃 ) |
| 77 |
65
|
adantr |
⊢ ( ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ¬ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝐴 ∈ ( 𝐶 𝐼 𝑝 ) ∧ 𝐴 ≠ 𝑝 ) ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝐵 ∈ ( 𝐶 𝐼 𝑞 ) ∧ ( 𝐵 − 𝑞 ) = ( 𝐴 − 𝑝 ) ) ) ∧ 𝑟 ∈ 𝑃 ) ∧ ( 𝑟 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 𝑟 ∈ ( 𝐵 𝐼 𝑝 ) ) ) ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑟 𝐼 𝐶 ) ) ) ) ∧ 𝑠 ∈ 𝑃 ) ∧ ( 𝑠 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 〈“ 𝐵 𝑟 𝑝 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐴 𝑠 𝑞 ”〉 ) ) ∧ 𝑟 ≠ 𝐴 ) → 𝐴 ∈ 𝑃 ) |
| 78 |
61
|
adantr |
⊢ ( ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ¬ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝐴 ∈ ( 𝐶 𝐼 𝑝 ) ∧ 𝐴 ≠ 𝑝 ) ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝐵 ∈ ( 𝐶 𝐼 𝑞 ) ∧ ( 𝐵 − 𝑞 ) = ( 𝐴 − 𝑝 ) ) ) ∧ 𝑟 ∈ 𝑃 ) ∧ ( 𝑟 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 𝑟 ∈ ( 𝐵 𝐼 𝑝 ) ) ) ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑟 𝐼 𝐶 ) ) ) ) ∧ 𝑠 ∈ 𝑃 ) ∧ ( 𝑠 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 〈“ 𝐵 𝑟 𝑝 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐴 𝑠 𝑞 ”〉 ) ) ∧ 𝑟 ≠ 𝐴 ) → 𝐶 ∈ 𝑃 ) |
| 79 |
|
simplr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ¬ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝐴 ∈ ( 𝐶 𝐼 𝑝 ) ∧ 𝐴 ≠ 𝑝 ) ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝐵 ∈ ( 𝐶 𝐼 𝑞 ) ∧ ( 𝐵 − 𝑞 ) = ( 𝐴 − 𝑝 ) ) ) → 𝑞 ∈ 𝑃 ) |
| 80 |
79
|
ad3antrrr |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ ¬ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝐴 ∈ ( 𝐶 𝐼 𝑝 ) ∧ 𝐴 ≠ 𝑝 ) ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝐵 ∈ ( 𝐶 𝐼 𝑞 ) ∧ ( 𝐵 − 𝑞 ) = ( 𝐴 − 𝑝 ) ) ) ∧ 𝑟 ∈ 𝑃 ) ∧ ( 𝑟 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 𝑟 ∈ ( 𝐵 𝐼 𝑝 ) ) ) ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑟 𝐼 𝐶 ) ) ) ) → 𝑞 ∈ 𝑃 ) |
| 81 |
80
|
ad2antrr |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ¬ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝐴 ∈ ( 𝐶 𝐼 𝑝 ) ∧ 𝐴 ≠ 𝑝 ) ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝐵 ∈ ( 𝐶 𝐼 𝑞 ) ∧ ( 𝐵 − 𝑞 ) = ( 𝐴 − 𝑝 ) ) ) ∧ 𝑟 ∈ 𝑃 ) ∧ ( 𝑟 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 𝑟 ∈ ( 𝐵 𝐼 𝑝 ) ) ) ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑟 𝐼 𝐶 ) ) ) ) ∧ 𝑠 ∈ 𝑃 ) ∧ ( 𝑠 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 〈“ 𝐵 𝑟 𝑝 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐴 𝑠 𝑞 ”〉 ) ) → 𝑞 ∈ 𝑃 ) |
| 82 |
81
|
adantr |
⊢ ( ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ¬ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝐴 ∈ ( 𝐶 𝐼 𝑝 ) ∧ 𝐴 ≠ 𝑝 ) ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝐵 ∈ ( 𝐶 𝐼 𝑞 ) ∧ ( 𝐵 − 𝑞 ) = ( 𝐴 − 𝑝 ) ) ) ∧ 𝑟 ∈ 𝑃 ) ∧ ( 𝑟 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 𝑟 ∈ ( 𝐵 𝐼 𝑝 ) ) ) ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑟 𝐼 𝐶 ) ) ) ) ∧ 𝑠 ∈ 𝑃 ) ∧ ( 𝑠 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 〈“ 𝐵 𝑟 𝑝 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐴 𝑠 𝑞 ”〉 ) ) ∧ 𝑟 ≠ 𝐴 ) → 𝑞 ∈ 𝑃 ) |
| 83 |
68
|
ad9antr |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ¬ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝐴 ∈ ( 𝐶 𝐼 𝑝 ) ∧ 𝐴 ≠ 𝑝 ) ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝐵 ∈ ( 𝐶 𝐼 𝑞 ) ∧ ( 𝐵 − 𝑞 ) = ( 𝐴 − 𝑝 ) ) ) ∧ 𝑟 ∈ 𝑃 ) ∧ ( 𝑟 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 𝑟 ∈ ( 𝐵 𝐼 𝑝 ) ) ) ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑟 𝐼 𝐶 ) ) ) ) ∧ 𝑠 ∈ 𝑃 ) ∧ ( 𝑠 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 〈“ 𝐵 𝑟 𝑝 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐴 𝑠 𝑞 ”〉 ) ) → ¬ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) |
| 84 |
1 4 3 53 65 64 61 83
|
ncolrot2 |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ¬ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝐴 ∈ ( 𝐶 𝐼 𝑝 ) ∧ 𝐴 ≠ 𝑝 ) ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝐵 ∈ ( 𝐶 𝐼 𝑞 ) ∧ ( 𝐵 − 𝑞 ) = ( 𝐴 − 𝑝 ) ) ) ∧ 𝑟 ∈ 𝑃 ) ∧ ( 𝑟 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 𝑟 ∈ ( 𝐵 𝐼 𝑝 ) ) ) ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑟 𝐼 𝐶 ) ) ) ) ∧ 𝑠 ∈ 𝑃 ) ∧ ( 𝑠 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 〈“ 𝐵 𝑟 𝑝 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐴 𝑠 𝑞 ”〉 ) ) → ¬ ( 𝐵 ∈ ( 𝐶 𝐿 𝐴 ) ∨ 𝐶 = 𝐴 ) ) |
| 85 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐶 ∈ ( 𝐵 𝐿 𝐴 ) ∨ 𝐵 = 𝐴 ) ) → 𝐺 ∈ TarskiG ) |
| 86 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐶 ∈ ( 𝐵 𝐿 𝐴 ) ∨ 𝐵 = 𝐴 ) ) → 𝐵 ∈ 𝑃 ) |
| 87 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐶 ∈ ( 𝐵 𝐿 𝐴 ) ∨ 𝐵 = 𝐴 ) ) → 𝐴 ∈ 𝑃 ) |
| 88 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐶 ∈ ( 𝐵 𝐿 𝐴 ) ∨ 𝐵 = 𝐴 ) ) → 𝐶 ∈ 𝑃 ) |
| 89 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( 𝐶 ∈ ( 𝐵 𝐿 𝐴 ) ∨ 𝐵 = 𝐴 ) ) → ( 𝐶 ∈ ( 𝐵 𝐿 𝐴 ) ∨ 𝐵 = 𝐴 ) ) |
| 90 |
1 4 3 85 86 87 88 89
|
colcom |
⊢ ( ( 𝜑 ∧ ( 𝐶 ∈ ( 𝐵 𝐿 𝐴 ) ∨ 𝐵 = 𝐴 ) ) → ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) |
| 91 |
90
|
stoic1a |
⊢ ( ( 𝜑 ∧ ¬ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) → ¬ ( 𝐶 ∈ ( 𝐵 𝐿 𝐴 ) ∨ 𝐵 = 𝐴 ) ) |
| 92 |
91
|
ad9antr |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ¬ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝐴 ∈ ( 𝐶 𝐼 𝑝 ) ∧ 𝐴 ≠ 𝑝 ) ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝐵 ∈ ( 𝐶 𝐼 𝑞 ) ∧ ( 𝐵 − 𝑞 ) = ( 𝐴 − 𝑝 ) ) ) ∧ 𝑟 ∈ 𝑃 ) ∧ ( 𝑟 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 𝑟 ∈ ( 𝐵 𝐼 𝑝 ) ) ) ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑟 𝐼 𝐶 ) ) ) ) ∧ 𝑠 ∈ 𝑃 ) ∧ ( 𝑠 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 〈“ 𝐵 𝑟 𝑝 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐴 𝑠 𝑞 ”〉 ) ) → ¬ ( 𝐶 ∈ ( 𝐵 𝐿 𝐴 ) ∨ 𝐵 = 𝐴 ) ) |
| 93 |
1 3 4 53 61 64 65 92
|
ncolne1 |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ¬ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝐴 ∈ ( 𝐶 𝐼 𝑝 ) ∧ 𝐴 ≠ 𝑝 ) ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝐵 ∈ ( 𝐶 𝐼 𝑞 ) ∧ ( 𝐵 − 𝑞 ) = ( 𝐴 − 𝑝 ) ) ) ∧ 𝑟 ∈ 𝑃 ) ∧ ( 𝑟 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 𝑟 ∈ ( 𝐵 𝐼 𝑝 ) ) ) ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑟 𝐼 𝐶 ) ) ) ) ∧ 𝑠 ∈ 𝑃 ) ∧ ( 𝑠 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 〈“ 𝐵 𝑟 𝑝 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐴 𝑠 𝑞 ”〉 ) ) → 𝐶 ≠ 𝐵 ) |
| 94 |
93
|
necomd |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ¬ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝐴 ∈ ( 𝐶 𝐼 𝑝 ) ∧ 𝐴 ≠ 𝑝 ) ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝐵 ∈ ( 𝐶 𝐼 𝑞 ) ∧ ( 𝐵 − 𝑞 ) = ( 𝐴 − 𝑝 ) ) ) ∧ 𝑟 ∈ 𝑃 ) ∧ ( 𝑟 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 𝑟 ∈ ( 𝐵 𝐼 𝑝 ) ) ) ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑟 𝐼 𝐶 ) ) ) ) ∧ 𝑠 ∈ 𝑃 ) ∧ ( 𝑠 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 〈“ 𝐵 𝑟 𝑝 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐴 𝑠 𝑞 ”〉 ) ) → 𝐵 ≠ 𝐶 ) |
| 95 |
|
simprl |
⊢ ( ( ( ( ( ( 𝜑 ∧ ¬ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝐴 ∈ ( 𝐶 𝐼 𝑝 ) ∧ 𝐴 ≠ 𝑝 ) ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝐵 ∈ ( 𝐶 𝐼 𝑞 ) ∧ ( 𝐵 − 𝑞 ) = ( 𝐴 − 𝑝 ) ) ) → 𝐵 ∈ ( 𝐶 𝐼 𝑞 ) ) |
| 96 |
95
|
ad3antrrr |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ ¬ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝐴 ∈ ( 𝐶 𝐼 𝑝 ) ∧ 𝐴 ≠ 𝑝 ) ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝐵 ∈ ( 𝐶 𝐼 𝑞 ) ∧ ( 𝐵 − 𝑞 ) = ( 𝐴 − 𝑝 ) ) ) ∧ 𝑟 ∈ 𝑃 ) ∧ ( 𝑟 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 𝑟 ∈ ( 𝐵 𝐼 𝑝 ) ) ) ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑟 𝐼 𝐶 ) ) ) ) → 𝐵 ∈ ( 𝐶 𝐼 𝑞 ) ) |
| 97 |
96
|
ad2antrr |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ¬ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝐴 ∈ ( 𝐶 𝐼 𝑝 ) ∧ 𝐴 ≠ 𝑝 ) ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝐵 ∈ ( 𝐶 𝐼 𝑞 ) ∧ ( 𝐵 − 𝑞 ) = ( 𝐴 − 𝑝 ) ) ) ∧ 𝑟 ∈ 𝑃 ) ∧ ( 𝑟 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 𝑟 ∈ ( 𝐵 𝐼 𝑝 ) ) ) ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑟 𝐼 𝐶 ) ) ) ) ∧ 𝑠 ∈ 𝑃 ) ∧ ( 𝑠 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 〈“ 𝐵 𝑟 𝑝 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐴 𝑠 𝑞 ”〉 ) ) → 𝐵 ∈ ( 𝐶 𝐼 𝑞 ) ) |
| 98 |
1 3 4 53 61 64 81 93 97
|
btwnlng3 |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ¬ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝐴 ∈ ( 𝐶 𝐼 𝑝 ) ∧ 𝐴 ≠ 𝑝 ) ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝐵 ∈ ( 𝐶 𝐼 𝑞 ) ∧ ( 𝐵 − 𝑞 ) = ( 𝐴 − 𝑝 ) ) ) ∧ 𝑟 ∈ 𝑃 ) ∧ ( 𝑟 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 𝑟 ∈ ( 𝐵 𝐼 𝑝 ) ) ) ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑟 𝐼 𝐶 ) ) ) ) ∧ 𝑠 ∈ 𝑃 ) ∧ ( 𝑠 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 〈“ 𝐵 𝑟 𝑝 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐴 𝑠 𝑞 ”〉 ) ) → 𝑞 ∈ ( 𝐶 𝐿 𝐵 ) ) |
| 99 |
1 3 4 53 64 61 81 94 98
|
lncom |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ¬ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝐴 ∈ ( 𝐶 𝐼 𝑝 ) ∧ 𝐴 ≠ 𝑝 ) ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝐵 ∈ ( 𝐶 𝐼 𝑞 ) ∧ ( 𝐵 − 𝑞 ) = ( 𝐴 − 𝑝 ) ) ) ∧ 𝑟 ∈ 𝑃 ) ∧ ( 𝑟 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 𝑟 ∈ ( 𝐵 𝐼 𝑝 ) ) ) ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑟 𝐼 𝐶 ) ) ) ) ∧ 𝑠 ∈ 𝑃 ) ∧ ( 𝑠 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 〈“ 𝐵 𝑟 𝑝 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐴 𝑠 𝑞 ”〉 ) ) → 𝑞 ∈ ( 𝐵 𝐿 𝐶 ) ) |
| 100 |
53
|
adantr |
⊢ ( ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ¬ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝐴 ∈ ( 𝐶 𝐼 𝑝 ) ∧ 𝐴 ≠ 𝑝 ) ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝐵 ∈ ( 𝐶 𝐼 𝑞 ) ∧ ( 𝐵 − 𝑞 ) = ( 𝐴 − 𝑝 ) ) ) ∧ 𝑟 ∈ 𝑃 ) ∧ ( 𝑟 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 𝑟 ∈ ( 𝐵 𝐼 𝑝 ) ) ) ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑟 𝐼 𝐶 ) ) ) ) ∧ 𝑠 ∈ 𝑃 ) ∧ ( 𝑠 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 〈“ 𝐵 𝑟 𝑝 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐴 𝑠 𝑞 ”〉 ) ) ∧ 𝑞 = 𝐶 ) → 𝐺 ∈ TarskiG ) |
| 101 |
61
|
adantr |
⊢ ( ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ¬ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝐴 ∈ ( 𝐶 𝐼 𝑝 ) ∧ 𝐴 ≠ 𝑝 ) ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝐵 ∈ ( 𝐶 𝐼 𝑞 ) ∧ ( 𝐵 − 𝑞 ) = ( 𝐴 − 𝑝 ) ) ) ∧ 𝑟 ∈ 𝑃 ) ∧ ( 𝑟 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 𝑟 ∈ ( 𝐵 𝐼 𝑝 ) ) ) ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑟 𝐼 𝐶 ) ) ) ) ∧ 𝑠 ∈ 𝑃 ) ∧ ( 𝑠 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 〈“ 𝐵 𝑟 𝑝 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐴 𝑠 𝑞 ”〉 ) ) ∧ 𝑞 = 𝐶 ) → 𝐶 ∈ 𝑃 ) |
| 102 |
64
|
adantr |
⊢ ( ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ¬ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝐴 ∈ ( 𝐶 𝐼 𝑝 ) ∧ 𝐴 ≠ 𝑝 ) ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝐵 ∈ ( 𝐶 𝐼 𝑞 ) ∧ ( 𝐵 − 𝑞 ) = ( 𝐴 − 𝑝 ) ) ) ∧ 𝑟 ∈ 𝑃 ) ∧ ( 𝑟 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 𝑟 ∈ ( 𝐵 𝐼 𝑝 ) ) ) ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑟 𝐼 𝐶 ) ) ) ) ∧ 𝑠 ∈ 𝑃 ) ∧ ( 𝑠 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 〈“ 𝐵 𝑟 𝑝 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐴 𝑠 𝑞 ”〉 ) ) ∧ 𝑞 = 𝐶 ) → 𝐵 ∈ 𝑃 ) |
| 103 |
97
|
adantr |
⊢ ( ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ¬ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝐴 ∈ ( 𝐶 𝐼 𝑝 ) ∧ 𝐴 ≠ 𝑝 ) ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝐵 ∈ ( 𝐶 𝐼 𝑞 ) ∧ ( 𝐵 − 𝑞 ) = ( 𝐴 − 𝑝 ) ) ) ∧ 𝑟 ∈ 𝑃 ) ∧ ( 𝑟 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 𝑟 ∈ ( 𝐵 𝐼 𝑝 ) ) ) ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑟 𝐼 𝐶 ) ) ) ) ∧ 𝑠 ∈ 𝑃 ) ∧ ( 𝑠 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 〈“ 𝐵 𝑟 𝑝 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐴 𝑠 𝑞 ”〉 ) ) ∧ 𝑞 = 𝐶 ) → 𝐵 ∈ ( 𝐶 𝐼 𝑞 ) ) |
| 104 |
|
simpr |
⊢ ( ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ¬ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝐴 ∈ ( 𝐶 𝐼 𝑝 ) ∧ 𝐴 ≠ 𝑝 ) ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝐵 ∈ ( 𝐶 𝐼 𝑞 ) ∧ ( 𝐵 − 𝑞 ) = ( 𝐴 − 𝑝 ) ) ) ∧ 𝑟 ∈ 𝑃 ) ∧ ( 𝑟 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 𝑟 ∈ ( 𝐵 𝐼 𝑝 ) ) ) ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑟 𝐼 𝐶 ) ) ) ) ∧ 𝑠 ∈ 𝑃 ) ∧ ( 𝑠 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 〈“ 𝐵 𝑟 𝑝 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐴 𝑠 𝑞 ”〉 ) ) ∧ 𝑞 = 𝐶 ) → 𝑞 = 𝐶 ) |
| 105 |
104
|
oveq2d |
⊢ ( ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ¬ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝐴 ∈ ( 𝐶 𝐼 𝑝 ) ∧ 𝐴 ≠ 𝑝 ) ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝐵 ∈ ( 𝐶 𝐼 𝑞 ) ∧ ( 𝐵 − 𝑞 ) = ( 𝐴 − 𝑝 ) ) ) ∧ 𝑟 ∈ 𝑃 ) ∧ ( 𝑟 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 𝑟 ∈ ( 𝐵 𝐼 𝑝 ) ) ) ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑟 𝐼 𝐶 ) ) ) ) ∧ 𝑠 ∈ 𝑃 ) ∧ ( 𝑠 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 〈“ 𝐵 𝑟 𝑝 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐴 𝑠 𝑞 ”〉 ) ) ∧ 𝑞 = 𝐶 ) → ( 𝐶 𝐼 𝑞 ) = ( 𝐶 𝐼 𝐶 ) ) |
| 106 |
103 105
|
eleqtrd |
⊢ ( ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ¬ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝐴 ∈ ( 𝐶 𝐼 𝑝 ) ∧ 𝐴 ≠ 𝑝 ) ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝐵 ∈ ( 𝐶 𝐼 𝑞 ) ∧ ( 𝐵 − 𝑞 ) = ( 𝐴 − 𝑝 ) ) ) ∧ 𝑟 ∈ 𝑃 ) ∧ ( 𝑟 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 𝑟 ∈ ( 𝐵 𝐼 𝑝 ) ) ) ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑟 𝐼 𝐶 ) ) ) ) ∧ 𝑠 ∈ 𝑃 ) ∧ ( 𝑠 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 〈“ 𝐵 𝑟 𝑝 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐴 𝑠 𝑞 ”〉 ) ) ∧ 𝑞 = 𝐶 ) → 𝐵 ∈ ( 𝐶 𝐼 𝐶 ) ) |
| 107 |
1 2 3 100 101 102 106
|
axtgbtwnid |
⊢ ( ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ¬ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝐴 ∈ ( 𝐶 𝐼 𝑝 ) ∧ 𝐴 ≠ 𝑝 ) ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝐵 ∈ ( 𝐶 𝐼 𝑞 ) ∧ ( 𝐵 − 𝑞 ) = ( 𝐴 − 𝑝 ) ) ) ∧ 𝑟 ∈ 𝑃 ) ∧ ( 𝑟 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 𝑟 ∈ ( 𝐵 𝐼 𝑝 ) ) ) ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑟 𝐼 𝐶 ) ) ) ) ∧ 𝑠 ∈ 𝑃 ) ∧ ( 𝑠 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 〈“ 𝐵 𝑟 𝑝 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐴 𝑠 𝑞 ”〉 ) ) ∧ 𝑞 = 𝐶 ) → 𝐶 = 𝐵 ) |
| 108 |
93
|
adantr |
⊢ ( ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ¬ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝐴 ∈ ( 𝐶 𝐼 𝑝 ) ∧ 𝐴 ≠ 𝑝 ) ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝐵 ∈ ( 𝐶 𝐼 𝑞 ) ∧ ( 𝐵 − 𝑞 ) = ( 𝐴 − 𝑝 ) ) ) ∧ 𝑟 ∈ 𝑃 ) ∧ ( 𝑟 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 𝑟 ∈ ( 𝐵 𝐼 𝑝 ) ) ) ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑟 𝐼 𝐶 ) ) ) ) ∧ 𝑠 ∈ 𝑃 ) ∧ ( 𝑠 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 〈“ 𝐵 𝑟 𝑝 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐴 𝑠 𝑞 ”〉 ) ) ∧ 𝑞 = 𝐶 ) → 𝐶 ≠ 𝐵 ) |
| 109 |
108
|
neneqd |
⊢ ( ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ¬ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝐴 ∈ ( 𝐶 𝐼 𝑝 ) ∧ 𝐴 ≠ 𝑝 ) ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝐵 ∈ ( 𝐶 𝐼 𝑞 ) ∧ ( 𝐵 − 𝑞 ) = ( 𝐴 − 𝑝 ) ) ) ∧ 𝑟 ∈ 𝑃 ) ∧ ( 𝑟 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 𝑟 ∈ ( 𝐵 𝐼 𝑝 ) ) ) ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑟 𝐼 𝐶 ) ) ) ) ∧ 𝑠 ∈ 𝑃 ) ∧ ( 𝑠 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 〈“ 𝐵 𝑟 𝑝 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐴 𝑠 𝑞 ”〉 ) ) ∧ 𝑞 = 𝐶 ) → ¬ 𝐶 = 𝐵 ) |
| 110 |
107 109
|
pm2.65da |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ¬ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝐴 ∈ ( 𝐶 𝐼 𝑝 ) ∧ 𝐴 ≠ 𝑝 ) ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝐵 ∈ ( 𝐶 𝐼 𝑞 ) ∧ ( 𝐵 − 𝑞 ) = ( 𝐴 − 𝑝 ) ) ) ∧ 𝑟 ∈ 𝑃 ) ∧ ( 𝑟 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 𝑟 ∈ ( 𝐵 𝐼 𝑝 ) ) ) ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑟 𝐼 𝐶 ) ) ) ) ∧ 𝑠 ∈ 𝑃 ) ∧ ( 𝑠 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 〈“ 𝐵 𝑟 𝑝 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐴 𝑠 𝑞 ”〉 ) ) → ¬ 𝑞 = 𝐶 ) |
| 111 |
110
|
neqned |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ¬ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝐴 ∈ ( 𝐶 𝐼 𝑝 ) ∧ 𝐴 ≠ 𝑝 ) ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝐵 ∈ ( 𝐶 𝐼 𝑞 ) ∧ ( 𝐵 − 𝑞 ) = ( 𝐴 − 𝑝 ) ) ) ∧ 𝑟 ∈ 𝑃 ) ∧ ( 𝑟 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 𝑟 ∈ ( 𝐵 𝐼 𝑝 ) ) ) ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑟 𝐼 𝐶 ) ) ) ) ∧ 𝑠 ∈ 𝑃 ) ∧ ( 𝑠 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 〈“ 𝐵 𝑟 𝑝 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐴 𝑠 𝑞 ”〉 ) ) → 𝑞 ≠ 𝐶 ) |
| 112 |
1 3 4 53 64 61 65 81 84 99 111
|
ncolncol |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ¬ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝐴 ∈ ( 𝐶 𝐼 𝑝 ) ∧ 𝐴 ≠ 𝑝 ) ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝐵 ∈ ( 𝐶 𝐼 𝑞 ) ∧ ( 𝐵 − 𝑞 ) = ( 𝐴 − 𝑝 ) ) ) ∧ 𝑟 ∈ 𝑃 ) ∧ ( 𝑟 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 𝑟 ∈ ( 𝐵 𝐼 𝑝 ) ) ) ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑟 𝐼 𝐶 ) ) ) ) ∧ 𝑠 ∈ 𝑃 ) ∧ ( 𝑠 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 〈“ 𝐵 𝑟 𝑝 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐴 𝑠 𝑞 ”〉 ) ) → ¬ ( 𝑞 ∈ ( 𝐶 𝐿 𝐴 ) ∨ 𝐶 = 𝐴 ) ) |
| 113 |
1 4 3 53 61 65 81 112
|
ncolcom |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ¬ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝐴 ∈ ( 𝐶 𝐼 𝑝 ) ∧ 𝐴 ≠ 𝑝 ) ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝐵 ∈ ( 𝐶 𝐼 𝑞 ) ∧ ( 𝐵 − 𝑞 ) = ( 𝐴 − 𝑝 ) ) ) ∧ 𝑟 ∈ 𝑃 ) ∧ ( 𝑟 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 𝑟 ∈ ( 𝐵 𝐼 𝑝 ) ) ) ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑟 𝐼 𝐶 ) ) ) ) ∧ 𝑠 ∈ 𝑃 ) ∧ ( 𝑠 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 〈“ 𝐵 𝑟 𝑝 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐴 𝑠 𝑞 ”〉 ) ) → ¬ ( 𝑞 ∈ ( 𝐴 𝐿 𝐶 ) ∨ 𝐴 = 𝐶 ) ) |
| 114 |
113
|
adantr |
⊢ ( ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ¬ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝐴 ∈ ( 𝐶 𝐼 𝑝 ) ∧ 𝐴 ≠ 𝑝 ) ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝐵 ∈ ( 𝐶 𝐼 𝑞 ) ∧ ( 𝐵 − 𝑞 ) = ( 𝐴 − 𝑝 ) ) ) ∧ 𝑟 ∈ 𝑃 ) ∧ ( 𝑟 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 𝑟 ∈ ( 𝐵 𝐼 𝑝 ) ) ) ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑟 𝐼 𝐶 ) ) ) ) ∧ 𝑠 ∈ 𝑃 ) ∧ ( 𝑠 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 〈“ 𝐵 𝑟 𝑝 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐴 𝑠 𝑞 ”〉 ) ) ∧ 𝑟 ≠ 𝐴 ) → ¬ ( 𝑞 ∈ ( 𝐴 𝐿 𝐶 ) ∨ 𝐴 = 𝐶 ) ) |
| 115 |
|
simp-4r |
⊢ ( ( ( ( ( ( 𝜑 ∧ ¬ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝐴 ∈ ( 𝐶 𝐼 𝑝 ) ∧ 𝐴 ≠ 𝑝 ) ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝐵 ∈ ( 𝐶 𝐼 𝑞 ) ∧ ( 𝐵 − 𝑞 ) = ( 𝐴 − 𝑝 ) ) ) → 𝑝 ∈ 𝑃 ) |
| 116 |
115
|
ad2antrr |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ ¬ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝐴 ∈ ( 𝐶 𝐼 𝑝 ) ∧ 𝐴 ≠ 𝑝 ) ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝐵 ∈ ( 𝐶 𝐼 𝑞 ) ∧ ( 𝐵 − 𝑞 ) = ( 𝐴 − 𝑝 ) ) ) ∧ 𝑟 ∈ 𝑃 ) ∧ ( 𝑟 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 𝑟 ∈ ( 𝐵 𝐼 𝑝 ) ) ) → 𝑝 ∈ 𝑃 ) |
| 117 |
116
|
adantr |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ ¬ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝐴 ∈ ( 𝐶 𝐼 𝑝 ) ∧ 𝐴 ≠ 𝑝 ) ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝐵 ∈ ( 𝐶 𝐼 𝑞 ) ∧ ( 𝐵 − 𝑞 ) = ( 𝐴 − 𝑝 ) ) ) ∧ 𝑟 ∈ 𝑃 ) ∧ ( 𝑟 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 𝑟 ∈ ( 𝐵 𝐼 𝑝 ) ) ) ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑟 𝐼 𝐶 ) ) ) ) → 𝑝 ∈ 𝑃 ) |
| 118 |
117
|
ad2antrr |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ¬ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝐴 ∈ ( 𝐶 𝐼 𝑝 ) ∧ 𝐴 ≠ 𝑝 ) ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝐵 ∈ ( 𝐶 𝐼 𝑞 ) ∧ ( 𝐵 − 𝑞 ) = ( 𝐴 − 𝑝 ) ) ) ∧ 𝑟 ∈ 𝑃 ) ∧ ( 𝑟 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 𝑟 ∈ ( 𝐵 𝐼 𝑝 ) ) ) ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑟 𝐼 𝐶 ) ) ) ) ∧ 𝑠 ∈ 𝑃 ) ∧ ( 𝑠 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 〈“ 𝐵 𝑟 𝑝 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐴 𝑠 𝑞 ”〉 ) ) → 𝑝 ∈ 𝑃 ) |
| 119 |
|
simp-4r |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ ¬ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝐴 ∈ ( 𝐶 𝐼 𝑝 ) ∧ 𝐴 ≠ 𝑝 ) ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝐵 ∈ ( 𝐶 𝐼 𝑞 ) ∧ ( 𝐵 − 𝑞 ) = ( 𝐴 − 𝑝 ) ) ) ∧ 𝑟 ∈ 𝑃 ) ∧ ( 𝑟 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 𝑟 ∈ ( 𝐵 𝐼 𝑝 ) ) ) ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑟 𝐼 𝐶 ) ) ) ) → ( 𝐵 ∈ ( 𝐶 𝐼 𝑞 ) ∧ ( 𝐵 − 𝑞 ) = ( 𝐴 − 𝑝 ) ) ) |
| 120 |
119
|
simprd |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ ¬ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝐴 ∈ ( 𝐶 𝐼 𝑝 ) ∧ 𝐴 ≠ 𝑝 ) ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝐵 ∈ ( 𝐶 𝐼 𝑞 ) ∧ ( 𝐵 − 𝑞 ) = ( 𝐴 − 𝑝 ) ) ) ∧ 𝑟 ∈ 𝑃 ) ∧ ( 𝑟 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 𝑟 ∈ ( 𝐵 𝐼 𝑝 ) ) ) ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑟 𝐼 𝐶 ) ) ) ) → ( 𝐵 − 𝑞 ) = ( 𝐴 − 𝑝 ) ) |
| 121 |
120
|
eqcomd |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ ¬ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝐴 ∈ ( 𝐶 𝐼 𝑝 ) ∧ 𝐴 ≠ 𝑝 ) ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝐵 ∈ ( 𝐶 𝐼 𝑞 ) ∧ ( 𝐵 − 𝑞 ) = ( 𝐴 − 𝑝 ) ) ) ∧ 𝑟 ∈ 𝑃 ) ∧ ( 𝑟 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 𝑟 ∈ ( 𝐵 𝐼 𝑝 ) ) ) ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑟 𝐼 𝐶 ) ) ) ) → ( 𝐴 − 𝑝 ) = ( 𝐵 − 𝑞 ) ) |
| 122 |
121
|
ad2antrr |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ¬ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝐴 ∈ ( 𝐶 𝐼 𝑝 ) ∧ 𝐴 ≠ 𝑝 ) ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝐵 ∈ ( 𝐶 𝐼 𝑞 ) ∧ ( 𝐵 − 𝑞 ) = ( 𝐴 − 𝑝 ) ) ) ∧ 𝑟 ∈ 𝑃 ) ∧ ( 𝑟 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 𝑟 ∈ ( 𝐵 𝐼 𝑝 ) ) ) ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑟 𝐼 𝐶 ) ) ) ) ∧ 𝑠 ∈ 𝑃 ) ∧ ( 𝑠 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 〈“ 𝐵 𝑟 𝑝 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐴 𝑠 𝑞 ”〉 ) ) → ( 𝐴 − 𝑝 ) = ( 𝐵 − 𝑞 ) ) |
| 123 |
1 2 3 53 65 118 64 81 122
|
tgcgrcomlr |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ¬ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝐴 ∈ ( 𝐶 𝐼 𝑝 ) ∧ 𝐴 ≠ 𝑝 ) ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝐵 ∈ ( 𝐶 𝐼 𝑞 ) ∧ ( 𝐵 − 𝑞 ) = ( 𝐴 − 𝑝 ) ) ) ∧ 𝑟 ∈ 𝑃 ) ∧ ( 𝑟 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 𝑟 ∈ ( 𝐵 𝐼 𝑝 ) ) ) ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑟 𝐼 𝐶 ) ) ) ) ∧ 𝑠 ∈ 𝑃 ) ∧ ( 𝑠 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 〈“ 𝐵 𝑟 𝑝 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐴 𝑠 𝑞 ”〉 ) ) → ( 𝑝 − 𝐴 ) = ( 𝑞 − 𝐵 ) ) |
| 124 |
|
simpllr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ¬ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝐴 ∈ ( 𝐶 𝐼 𝑝 ) ∧ 𝐴 ≠ 𝑝 ) ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝐵 ∈ ( 𝐶 𝐼 𝑞 ) ∧ ( 𝐵 − 𝑞 ) = ( 𝐴 − 𝑝 ) ) ) → ( 𝐴 ∈ ( 𝐶 𝐼 𝑝 ) ∧ 𝐴 ≠ 𝑝 ) ) |
| 125 |
124
|
ad5antr |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ¬ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝐴 ∈ ( 𝐶 𝐼 𝑝 ) ∧ 𝐴 ≠ 𝑝 ) ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝐵 ∈ ( 𝐶 𝐼 𝑞 ) ∧ ( 𝐵 − 𝑞 ) = ( 𝐴 − 𝑝 ) ) ) ∧ 𝑟 ∈ 𝑃 ) ∧ ( 𝑟 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 𝑟 ∈ ( 𝐵 𝐼 𝑝 ) ) ) ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑟 𝐼 𝐶 ) ) ) ) ∧ 𝑠 ∈ 𝑃 ) ∧ ( 𝑠 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 〈“ 𝐵 𝑟 𝑝 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐴 𝑠 𝑞 ”〉 ) ) → ( 𝐴 ∈ ( 𝐶 𝐼 𝑝 ) ∧ 𝐴 ≠ 𝑝 ) ) |
| 126 |
125
|
simprd |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ¬ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝐴 ∈ ( 𝐶 𝐼 𝑝 ) ∧ 𝐴 ≠ 𝑝 ) ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝐵 ∈ ( 𝐶 𝐼 𝑞 ) ∧ ( 𝐵 − 𝑞 ) = ( 𝐴 − 𝑝 ) ) ) ∧ 𝑟 ∈ 𝑃 ) ∧ ( 𝑟 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 𝑟 ∈ ( 𝐵 𝐼 𝑝 ) ) ) ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑟 𝐼 𝐶 ) ) ) ) ∧ 𝑠 ∈ 𝑃 ) ∧ ( 𝑠 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 〈“ 𝐵 𝑟 𝑝 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐴 𝑠 𝑞 ”〉 ) ) → 𝐴 ≠ 𝑝 ) |
| 127 |
126
|
necomd |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ¬ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝐴 ∈ ( 𝐶 𝐼 𝑝 ) ∧ 𝐴 ≠ 𝑝 ) ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝐵 ∈ ( 𝐶 𝐼 𝑞 ) ∧ ( 𝐵 − 𝑞 ) = ( 𝐴 − 𝑝 ) ) ) ∧ 𝑟 ∈ 𝑃 ) ∧ ( 𝑟 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 𝑟 ∈ ( 𝐵 𝐼 𝑝 ) ) ) ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑟 𝐼 𝐶 ) ) ) ) ∧ 𝑠 ∈ 𝑃 ) ∧ ( 𝑠 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 〈“ 𝐵 𝑟 𝑝 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐴 𝑠 𝑞 ”〉 ) ) → 𝑝 ≠ 𝐴 ) |
| 128 |
1 2 3 53 118 65 81 64 123 127
|
tgcgrneq |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ¬ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝐴 ∈ ( 𝐶 𝐼 𝑝 ) ∧ 𝐴 ≠ 𝑝 ) ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝐵 ∈ ( 𝐶 𝐼 𝑞 ) ∧ ( 𝐵 − 𝑞 ) = ( 𝐴 − 𝑝 ) ) ) ∧ 𝑟 ∈ 𝑃 ) ∧ ( 𝑟 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 𝑟 ∈ ( 𝐵 𝐼 𝑝 ) ) ) ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑟 𝐼 𝐶 ) ) ) ) ∧ 𝑠 ∈ 𝑃 ) ∧ ( 𝑠 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 〈“ 𝐵 𝑟 𝑝 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐴 𝑠 𝑞 ”〉 ) ) → 𝑞 ≠ 𝐵 ) |
| 129 |
1 3 4 53 61 64 65 81 92 98 128
|
ncolncol |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ¬ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝐴 ∈ ( 𝐶 𝐼 𝑝 ) ∧ 𝐴 ≠ 𝑝 ) ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝐵 ∈ ( 𝐶 𝐼 𝑞 ) ∧ ( 𝐵 − 𝑞 ) = ( 𝐴 − 𝑝 ) ) ) ∧ 𝑟 ∈ 𝑃 ) ∧ ( 𝑟 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 𝑟 ∈ ( 𝐵 𝐼 𝑝 ) ) ) ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑟 𝐼 𝐶 ) ) ) ) ∧ 𝑠 ∈ 𝑃 ) ∧ ( 𝑠 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 〈“ 𝐵 𝑟 𝑝 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐴 𝑠 𝑞 ”〉 ) ) → ¬ ( 𝑞 ∈ ( 𝐵 𝐿 𝐴 ) ∨ 𝐵 = 𝐴 ) ) |
| 130 |
1 3 4 53 81 64 65 129
|
ncolne2 |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ¬ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝐴 ∈ ( 𝐶 𝐼 𝑝 ) ∧ 𝐴 ≠ 𝑝 ) ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝐵 ∈ ( 𝐶 𝐼 𝑞 ) ∧ ( 𝐵 − 𝑞 ) = ( 𝐴 − 𝑝 ) ) ) ∧ 𝑟 ∈ 𝑃 ) ∧ ( 𝑟 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 𝑟 ∈ ( 𝐵 𝐼 𝑝 ) ) ) ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑟 𝐼 𝐶 ) ) ) ) ∧ 𝑠 ∈ 𝑃 ) ∧ ( 𝑠 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 〈“ 𝐵 𝑟 𝑝 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐴 𝑠 𝑞 ”〉 ) ) → 𝑞 ≠ 𝐴 ) |
| 131 |
130
|
necomd |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ¬ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝐴 ∈ ( 𝐶 𝐼 𝑝 ) ∧ 𝐴 ≠ 𝑝 ) ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝐵 ∈ ( 𝐶 𝐼 𝑞 ) ∧ ( 𝐵 − 𝑞 ) = ( 𝐴 − 𝑝 ) ) ) ∧ 𝑟 ∈ 𝑃 ) ∧ ( 𝑟 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 𝑟 ∈ ( 𝐵 𝐼 𝑝 ) ) ) ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑟 𝐼 𝐶 ) ) ) ) ∧ 𝑠 ∈ 𝑃 ) ∧ ( 𝑠 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 〈“ 𝐵 𝑟 𝑝 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐴 𝑠 𝑞 ”〉 ) ) → 𝐴 ≠ 𝑞 ) |
| 132 |
|
simp-4r |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ¬ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝐴 ∈ ( 𝐶 𝐼 𝑝 ) ∧ 𝐴 ≠ 𝑝 ) ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝐵 ∈ ( 𝐶 𝐼 𝑞 ) ∧ ( 𝐵 − 𝑞 ) = ( 𝐴 − 𝑝 ) ) ) ∧ 𝑟 ∈ 𝑃 ) ∧ ( 𝑟 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 𝑟 ∈ ( 𝐵 𝐼 𝑝 ) ) ) ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑟 𝐼 𝐶 ) ) ) ) ∧ 𝑠 ∈ 𝑃 ) ∧ ( 𝑠 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 〈“ 𝐵 𝑟 𝑝 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐴 𝑠 𝑞 ”〉 ) ) → ( 𝑟 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 𝑟 ∈ ( 𝐵 𝐼 𝑝 ) ) ) |
| 133 |
132
|
simpld |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ¬ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝐴 ∈ ( 𝐶 𝐼 𝑝 ) ∧ 𝐴 ≠ 𝑝 ) ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝐵 ∈ ( 𝐶 𝐼 𝑞 ) ∧ ( 𝐵 − 𝑞 ) = ( 𝐴 − 𝑝 ) ) ) ∧ 𝑟 ∈ 𝑃 ) ∧ ( 𝑟 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 𝑟 ∈ ( 𝐵 𝐼 𝑝 ) ) ) ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑟 𝐼 𝐶 ) ) ) ) ∧ 𝑠 ∈ 𝑃 ) ∧ ( 𝑠 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 〈“ 𝐵 𝑟 𝑝 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐴 𝑠 𝑞 ”〉 ) ) → 𝑟 ∈ ( 𝐴 𝐼 𝑞 ) ) |
| 134 |
1 3 4 53 65 81 55 131 133
|
btwnlng1 |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ¬ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝐴 ∈ ( 𝐶 𝐼 𝑝 ) ∧ 𝐴 ≠ 𝑝 ) ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝐵 ∈ ( 𝐶 𝐼 𝑞 ) ∧ ( 𝐵 − 𝑞 ) = ( 𝐴 − 𝑝 ) ) ) ∧ 𝑟 ∈ 𝑃 ) ∧ ( 𝑟 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 𝑟 ∈ ( 𝐵 𝐼 𝑝 ) ) ) ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑟 𝐼 𝐶 ) ) ) ) ∧ 𝑠 ∈ 𝑃 ) ∧ ( 𝑠 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 〈“ 𝐵 𝑟 𝑝 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐴 𝑠 𝑞 ”〉 ) ) → 𝑟 ∈ ( 𝐴 𝐿 𝑞 ) ) |
| 135 |
1 3 4 53 81 65 55 130 134
|
lncom |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ¬ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝐴 ∈ ( 𝐶 𝐼 𝑝 ) ∧ 𝐴 ≠ 𝑝 ) ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝐵 ∈ ( 𝐶 𝐼 𝑞 ) ∧ ( 𝐵 − 𝑞 ) = ( 𝐴 − 𝑝 ) ) ) ∧ 𝑟 ∈ 𝑃 ) ∧ ( 𝑟 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 𝑟 ∈ ( 𝐵 𝐼 𝑝 ) ) ) ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑟 𝐼 𝐶 ) ) ) ) ∧ 𝑠 ∈ 𝑃 ) ∧ ( 𝑠 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 〈“ 𝐵 𝑟 𝑝 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐴 𝑠 𝑞 ”〉 ) ) → 𝑟 ∈ ( 𝑞 𝐿 𝐴 ) ) |
| 136 |
135
|
adantr |
⊢ ( ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ¬ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝐴 ∈ ( 𝐶 𝐼 𝑝 ) ∧ 𝐴 ≠ 𝑝 ) ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝐵 ∈ ( 𝐶 𝐼 𝑞 ) ∧ ( 𝐵 − 𝑞 ) = ( 𝐴 − 𝑝 ) ) ) ∧ 𝑟 ∈ 𝑃 ) ∧ ( 𝑟 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 𝑟 ∈ ( 𝐵 𝐼 𝑝 ) ) ) ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑟 𝐼 𝐶 ) ) ) ) ∧ 𝑠 ∈ 𝑃 ) ∧ ( 𝑠 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 〈“ 𝐵 𝑟 𝑝 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐴 𝑠 𝑞 ”〉 ) ) ∧ 𝑟 ≠ 𝐴 ) → 𝑟 ∈ ( 𝑞 𝐿 𝐴 ) ) |
| 137 |
|
simpr |
⊢ ( ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ¬ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝐴 ∈ ( 𝐶 𝐼 𝑝 ) ∧ 𝐴 ≠ 𝑝 ) ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝐵 ∈ ( 𝐶 𝐼 𝑞 ) ∧ ( 𝐵 − 𝑞 ) = ( 𝐴 − 𝑝 ) ) ) ∧ 𝑟 ∈ 𝑃 ) ∧ ( 𝑟 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 𝑟 ∈ ( 𝐵 𝐼 𝑝 ) ) ) ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑟 𝐼 𝐶 ) ) ) ) ∧ 𝑠 ∈ 𝑃 ) ∧ ( 𝑠 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 〈“ 𝐵 𝑟 𝑝 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐴 𝑠 𝑞 ”〉 ) ) ∧ 𝑟 ≠ 𝐴 ) → 𝑟 ≠ 𝐴 ) |
| 138 |
1 3 4 75 82 77 78 76 114 136 137
|
ncolncol |
⊢ ( ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ¬ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝐴 ∈ ( 𝐶 𝐼 𝑝 ) ∧ 𝐴 ≠ 𝑝 ) ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝐵 ∈ ( 𝐶 𝐼 𝑞 ) ∧ ( 𝐵 − 𝑞 ) = ( 𝐴 − 𝑝 ) ) ) ∧ 𝑟 ∈ 𝑃 ) ∧ ( 𝑟 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 𝑟 ∈ ( 𝐵 𝐼 𝑝 ) ) ) ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑟 𝐼 𝐶 ) ) ) ) ∧ 𝑠 ∈ 𝑃 ) ∧ ( 𝑠 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 〈“ 𝐵 𝑟 𝑝 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐴 𝑠 𝑞 ”〉 ) ) ∧ 𝑟 ≠ 𝐴 ) → ¬ ( 𝑟 ∈ ( 𝐴 𝐿 𝐶 ) ∨ 𝐴 = 𝐶 ) ) |
| 139 |
1 3 4 75 76 77 78 138
|
ncolne2 |
⊢ ( ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ¬ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝐴 ∈ ( 𝐶 𝐼 𝑝 ) ∧ 𝐴 ≠ 𝑝 ) ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝐵 ∈ ( 𝐶 𝐼 𝑞 ) ∧ ( 𝐵 − 𝑞 ) = ( 𝐴 − 𝑝 ) ) ) ∧ 𝑟 ∈ 𝑃 ) ∧ ( 𝑟 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 𝑟 ∈ ( 𝐵 𝐼 𝑝 ) ) ) ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑟 𝐼 𝐶 ) ) ) ) ∧ 𝑠 ∈ 𝑃 ) ∧ ( 𝑠 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 〈“ 𝐵 𝑟 𝑝 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐴 𝑠 𝑞 ”〉 ) ) ∧ 𝑟 ≠ 𝐴 ) → 𝑟 ≠ 𝐶 ) |
| 140 |
74 139
|
pm2.61dane |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ¬ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝐴 ∈ ( 𝐶 𝐼 𝑝 ) ∧ 𝐴 ≠ 𝑝 ) ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝐵 ∈ ( 𝐶 𝐼 𝑞 ) ∧ ( 𝐵 − 𝑞 ) = ( 𝐴 − 𝑝 ) ) ) ∧ 𝑟 ∈ 𝑃 ) ∧ ( 𝑟 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 𝑟 ∈ ( 𝐵 𝐼 𝑝 ) ) ) ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑟 𝐼 𝐶 ) ) ) ) ∧ 𝑠 ∈ 𝑃 ) ∧ ( 𝑠 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 〈“ 𝐵 𝑟 𝑝 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐴 𝑠 𝑞 ”〉 ) ) → 𝑟 ≠ 𝐶 ) |
| 141 |
|
simpllr |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ¬ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝐴 ∈ ( 𝐶 𝐼 𝑝 ) ∧ 𝐴 ≠ 𝑝 ) ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝐵 ∈ ( 𝐶 𝐼 𝑞 ) ∧ ( 𝐵 − 𝑞 ) = ( 𝐴 − 𝑝 ) ) ) ∧ 𝑟 ∈ 𝑃 ) ∧ ( 𝑟 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 𝑟 ∈ ( 𝐵 𝐼 𝑝 ) ) ) ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑟 𝐼 𝐶 ) ) ) ) ∧ 𝑠 ∈ 𝑃 ) ∧ ( 𝑠 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 〈“ 𝐵 𝑟 𝑝 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐴 𝑠 𝑞 ”〉 ) ) → ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑟 𝐼 𝐶 ) ) ) ) |
| 142 |
141
|
simprd |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ¬ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝐴 ∈ ( 𝐶 𝐼 𝑝 ) ∧ 𝐴 ≠ 𝑝 ) ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝐵 ∈ ( 𝐶 𝐼 𝑞 ) ∧ ( 𝐵 − 𝑞 ) = ( 𝐴 − 𝑝 ) ) ) ∧ 𝑟 ∈ 𝑃 ) ∧ ( 𝑟 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 𝑟 ∈ ( 𝐵 𝐼 𝑝 ) ) ) ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑟 𝐼 𝐶 ) ) ) ) ∧ 𝑠 ∈ 𝑃 ) ∧ ( 𝑠 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 〈“ 𝐵 𝑟 𝑝 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐴 𝑠 𝑞 ”〉 ) ) → ( 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑟 𝐼 𝐶 ) ) ) |
| 143 |
142
|
simprd |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ¬ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝐴 ∈ ( 𝐶 𝐼 𝑝 ) ∧ 𝐴 ≠ 𝑝 ) ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝐵 ∈ ( 𝐶 𝐼 𝑞 ) ∧ ( 𝐵 − 𝑞 ) = ( 𝐴 − 𝑝 ) ) ) ∧ 𝑟 ∈ 𝑃 ) ∧ ( 𝑟 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 𝑟 ∈ ( 𝐵 𝐼 𝑝 ) ) ) ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑟 𝐼 𝐶 ) ) ) ) ∧ 𝑠 ∈ 𝑃 ) ∧ ( 𝑠 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 〈“ 𝐵 𝑟 𝑝 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐴 𝑠 𝑞 ”〉 ) ) → 𝑥 ∈ ( 𝑟 𝐼 𝐶 ) ) |
| 144 |
1 4 3 53 55 62 61 143
|
btwncolg3 |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ¬ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝐴 ∈ ( 𝐶 𝐼 𝑝 ) ∧ 𝐴 ≠ 𝑝 ) ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝐵 ∈ ( 𝐶 𝐼 𝑞 ) ∧ ( 𝐵 − 𝑞 ) = ( 𝐴 − 𝑝 ) ) ) ∧ 𝑟 ∈ 𝑃 ) ∧ ( 𝑟 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 𝑟 ∈ ( 𝐵 𝐼 𝑝 ) ) ) ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑟 𝐼 𝐶 ) ) ) ) ∧ 𝑠 ∈ 𝑃 ) ∧ ( 𝑠 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 〈“ 𝐵 𝑟 𝑝 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐴 𝑠 𝑞 ”〉 ) ) → ( 𝐶 ∈ ( 𝑟 𝐿 𝑥 ) ∨ 𝑟 = 𝑥 ) ) |
| 145 |
|
simplr |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ¬ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝐴 ∈ ( 𝐶 𝐼 𝑝 ) ∧ 𝐴 ≠ 𝑝 ) ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝐵 ∈ ( 𝐶 𝐼 𝑞 ) ∧ ( 𝐵 − 𝑞 ) = ( 𝐴 − 𝑝 ) ) ) ∧ 𝑟 ∈ 𝑃 ) ∧ ( 𝑟 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 𝑟 ∈ ( 𝐵 𝐼 𝑝 ) ) ) ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑟 𝐼 𝐶 ) ) ) ) ∧ 𝑠 ∈ 𝑃 ) ∧ ( 𝑠 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 〈“ 𝐵 𝑟 𝑝 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐴 𝑠 𝑞 ”〉 ) ) → 𝑠 ∈ 𝑃 ) |
| 146 |
|
simplr |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ ¬ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝐴 ∈ ( 𝐶 𝐼 𝑝 ) ∧ 𝐴 ≠ 𝑝 ) ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝐵 ∈ ( 𝐶 𝐼 𝑞 ) ∧ ( 𝐵 − 𝑞 ) = ( 𝐴 − 𝑝 ) ) ) ∧ 𝑟 ∈ 𝑃 ) ∧ ( 𝑟 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 𝑟 ∈ ( 𝐵 𝐼 𝑝 ) ) ) ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑟 𝐼 𝐶 ) ) ) ) → ( 𝑟 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 𝑟 ∈ ( 𝐵 𝐼 𝑝 ) ) ) |
| 147 |
146
|
simprd |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ ¬ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝐴 ∈ ( 𝐶 𝐼 𝑝 ) ∧ 𝐴 ≠ 𝑝 ) ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝐵 ∈ ( 𝐶 𝐼 𝑞 ) ∧ ( 𝐵 − 𝑞 ) = ( 𝐴 − 𝑝 ) ) ) ∧ 𝑟 ∈ 𝑃 ) ∧ ( 𝑟 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 𝑟 ∈ ( 𝐵 𝐼 𝑝 ) ) ) ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑟 𝐼 𝐶 ) ) ) ) → 𝑟 ∈ ( 𝐵 𝐼 𝑝 ) ) |
| 148 |
147
|
ad2antrr |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ¬ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝐴 ∈ ( 𝐶 𝐼 𝑝 ) ∧ 𝐴 ≠ 𝑝 ) ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝐵 ∈ ( 𝐶 𝐼 𝑞 ) ∧ ( 𝐵 − 𝑞 ) = ( 𝐴 − 𝑝 ) ) ) ∧ 𝑟 ∈ 𝑃 ) ∧ ( 𝑟 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 𝑟 ∈ ( 𝐵 𝐼 𝑝 ) ) ) ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑟 𝐼 𝐶 ) ) ) ) ∧ 𝑠 ∈ 𝑃 ) ∧ ( 𝑠 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 〈“ 𝐵 𝑟 𝑝 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐴 𝑠 𝑞 ”〉 ) ) → 𝑟 ∈ ( 𝐵 𝐼 𝑝 ) ) |
| 149 |
|
simprl |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ¬ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝐴 ∈ ( 𝐶 𝐼 𝑝 ) ∧ 𝐴 ≠ 𝑝 ) ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝐵 ∈ ( 𝐶 𝐼 𝑞 ) ∧ ( 𝐵 − 𝑞 ) = ( 𝐴 − 𝑝 ) ) ) ∧ 𝑟 ∈ 𝑃 ) ∧ ( 𝑟 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 𝑟 ∈ ( 𝐵 𝐼 𝑝 ) ) ) ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑟 𝐼 𝐶 ) ) ) ) ∧ 𝑠 ∈ 𝑃 ) ∧ ( 𝑠 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 〈“ 𝐵 𝑟 𝑝 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐴 𝑠 𝑞 ”〉 ) ) → 𝑠 ∈ ( 𝐴 𝐼 𝑞 ) ) |
| 150 |
124
|
simpld |
⊢ ( ( ( ( ( ( 𝜑 ∧ ¬ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝐴 ∈ ( 𝐶 𝐼 𝑝 ) ∧ 𝐴 ≠ 𝑝 ) ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝐵 ∈ ( 𝐶 𝐼 𝑞 ) ∧ ( 𝐵 − 𝑞 ) = ( 𝐴 − 𝑝 ) ) ) → 𝐴 ∈ ( 𝐶 𝐼 𝑝 ) ) |
| 151 |
150
|
ad2antrr |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ ¬ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝐴 ∈ ( 𝐶 𝐼 𝑝 ) ∧ 𝐴 ≠ 𝑝 ) ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝐵 ∈ ( 𝐶 𝐼 𝑞 ) ∧ ( 𝐵 − 𝑞 ) = ( 𝐴 − 𝑝 ) ) ) ∧ 𝑟 ∈ 𝑃 ) ∧ ( 𝑟 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 𝑟 ∈ ( 𝐵 𝐼 𝑝 ) ) ) → 𝐴 ∈ ( 𝐶 𝐼 𝑝 ) ) |
| 152 |
151
|
adantr |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ ¬ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝐴 ∈ ( 𝐶 𝐼 𝑝 ) ∧ 𝐴 ≠ 𝑝 ) ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝐵 ∈ ( 𝐶 𝐼 𝑞 ) ∧ ( 𝐵 − 𝑞 ) = ( 𝐴 − 𝑝 ) ) ) ∧ 𝑟 ∈ 𝑃 ) ∧ ( 𝑟 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 𝑟 ∈ ( 𝐵 𝐼 𝑝 ) ) ) ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑟 𝐼 𝐶 ) ) ) ) → 𝐴 ∈ ( 𝐶 𝐼 𝑝 ) ) |
| 153 |
11
|
ad8antr |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ ¬ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝐴 ∈ ( 𝐶 𝐼 𝑝 ) ∧ 𝐴 ≠ 𝑝 ) ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝐵 ∈ ( 𝐶 𝐼 𝑞 ) ∧ ( 𝐵 − 𝑞 ) = ( 𝐴 − 𝑝 ) ) ) ∧ 𝑟 ∈ 𝑃 ) ∧ ( 𝑟 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 𝑟 ∈ ( 𝐵 𝐼 𝑝 ) ) ) ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑟 𝐼 𝐶 ) ) ) ) → ( 𝐶 − 𝐴 ) = ( 𝐶 − 𝐵 ) ) |
| 154 |
153
|
eqcomd |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ ¬ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝐴 ∈ ( 𝐶 𝐼 𝑝 ) ∧ 𝐴 ≠ 𝑝 ) ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝐵 ∈ ( 𝐶 𝐼 𝑞 ) ∧ ( 𝐵 − 𝑞 ) = ( 𝐴 − 𝑝 ) ) ) ∧ 𝑟 ∈ 𝑃 ) ∧ ( 𝑟 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 𝑟 ∈ ( 𝐵 𝐼 𝑝 ) ) ) ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑟 𝐼 𝐶 ) ) ) ) → ( 𝐶 − 𝐵 ) = ( 𝐶 − 𝐴 ) ) |
| 155 |
1 2 3 42 48 52
|
axtgcgrrflx |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ ¬ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝐴 ∈ ( 𝐶 𝐼 𝑝 ) ∧ 𝐴 ≠ 𝑝 ) ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝐵 ∈ ( 𝐶 𝐼 𝑞 ) ∧ ( 𝐵 − 𝑞 ) = ( 𝐴 − 𝑝 ) ) ) ∧ 𝑟 ∈ 𝑃 ) ∧ ( 𝑟 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 𝑟 ∈ ( 𝐵 𝐼 𝑝 ) ) ) ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑟 𝐼 𝐶 ) ) ) ) → ( 𝐴 − 𝐵 ) = ( 𝐵 − 𝐴 ) ) |
| 156 |
1 2 3 42 60 48 117 60 52 80 52 48 70 152 96 153 121 154 155
|
axtg5seg |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ ¬ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝐴 ∈ ( 𝐶 𝐼 𝑝 ) ∧ 𝐴 ≠ 𝑝 ) ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝐵 ∈ ( 𝐶 𝐼 𝑞 ) ∧ ( 𝐵 − 𝑞 ) = ( 𝐴 − 𝑝 ) ) ) ∧ 𝑟 ∈ 𝑃 ) ∧ ( 𝑟 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 𝑟 ∈ ( 𝐵 𝐼 𝑝 ) ) ) ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑟 𝐼 𝐶 ) ) ) ) → ( 𝑝 − 𝐵 ) = ( 𝑞 − 𝐴 ) ) |
| 157 |
1 2 3 42 117 52 80 48 156
|
tgcgrcomlr |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ ¬ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝐴 ∈ ( 𝐶 𝐼 𝑝 ) ∧ 𝐴 ≠ 𝑝 ) ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝐵 ∈ ( 𝐶 𝐼 𝑞 ) ∧ ( 𝐵 − 𝑞 ) = ( 𝐴 − 𝑝 ) ) ) ∧ 𝑟 ∈ 𝑃 ) ∧ ( 𝑟 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 𝑟 ∈ ( 𝐵 𝐼 𝑝 ) ) ) ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑟 𝐼 𝐶 ) ) ) ) → ( 𝐵 − 𝑝 ) = ( 𝐴 − 𝑞 ) ) |
| 158 |
157
|
ad2antrr |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ¬ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝐴 ∈ ( 𝐶 𝐼 𝑝 ) ∧ 𝐴 ≠ 𝑝 ) ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝐵 ∈ ( 𝐶 𝐼 𝑞 ) ∧ ( 𝐵 − 𝑞 ) = ( 𝐴 − 𝑝 ) ) ) ∧ 𝑟 ∈ 𝑃 ) ∧ ( 𝑟 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 𝑟 ∈ ( 𝐵 𝐼 𝑝 ) ) ) ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑟 𝐼 𝐶 ) ) ) ) ∧ 𝑠 ∈ 𝑃 ) ∧ ( 𝑠 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 〈“ 𝐵 𝑟 𝑝 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐴 𝑠 𝑞 ”〉 ) ) → ( 𝐵 − 𝑝 ) = ( 𝐴 − 𝑞 ) ) |
| 159 |
|
simprr |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ¬ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝐴 ∈ ( 𝐶 𝐼 𝑝 ) ∧ 𝐴 ≠ 𝑝 ) ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝐵 ∈ ( 𝐶 𝐼 𝑞 ) ∧ ( 𝐵 − 𝑞 ) = ( 𝐴 − 𝑝 ) ) ) ∧ 𝑟 ∈ 𝑃 ) ∧ ( 𝑟 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 𝑟 ∈ ( 𝐵 𝐼 𝑝 ) ) ) ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑟 𝐼 𝐶 ) ) ) ) ∧ 𝑠 ∈ 𝑃 ) ∧ ( 𝑠 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 〈“ 𝐵 𝑟 𝑝 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐴 𝑠 𝑞 ”〉 ) ) → 〈“ 𝐵 𝑟 𝑝 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐴 𝑠 𝑞 ”〉 ) |
| 160 |
1 2 3 63 53 64 55 118 65 145 81 159
|
cgr3simp2 |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ¬ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝐴 ∈ ( 𝐶 𝐼 𝑝 ) ∧ 𝐴 ≠ 𝑝 ) ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝐵 ∈ ( 𝐶 𝐼 𝑞 ) ∧ ( 𝐵 − 𝑞 ) = ( 𝐴 − 𝑝 ) ) ) ∧ 𝑟 ∈ 𝑃 ) ∧ ( 𝑟 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 𝑟 ∈ ( 𝐵 𝐼 𝑝 ) ) ) ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑟 𝐼 𝐶 ) ) ) ) ∧ 𝑠 ∈ 𝑃 ) ∧ ( 𝑠 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 〈“ 𝐵 𝑟 𝑝 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐴 𝑠 𝑞 ”〉 ) ) → ( 𝑟 − 𝑝 ) = ( 𝑠 − 𝑞 ) ) |
| 161 |
1 2 3 53 64 65
|
axtgcgrrflx |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ¬ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝐴 ∈ ( 𝐶 𝐼 𝑝 ) ∧ 𝐴 ≠ 𝑝 ) ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝐵 ∈ ( 𝐶 𝐼 𝑞 ) ∧ ( 𝐵 − 𝑞 ) = ( 𝐴 − 𝑝 ) ) ) ∧ 𝑟 ∈ 𝑃 ) ∧ ( 𝑟 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 𝑟 ∈ ( 𝐵 𝐼 𝑝 ) ) ) ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑟 𝐼 𝐶 ) ) ) ) ∧ 𝑠 ∈ 𝑃 ) ∧ ( 𝑠 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 〈“ 𝐵 𝑟 𝑝 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐴 𝑠 𝑞 ”〉 ) ) → ( 𝐵 − 𝐴 ) = ( 𝐴 − 𝐵 ) ) |
| 162 |
1 2 3 53 64 55 118 65 65 145 81 64 148 149 158 160 161 123
|
tgifscgr |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ¬ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝐴 ∈ ( 𝐶 𝐼 𝑝 ) ∧ 𝐴 ≠ 𝑝 ) ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝐵 ∈ ( 𝐶 𝐼 𝑞 ) ∧ ( 𝐵 − 𝑞 ) = ( 𝐴 − 𝑝 ) ) ) ∧ 𝑟 ∈ 𝑃 ) ∧ ( 𝑟 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 𝑟 ∈ ( 𝐵 𝐼 𝑝 ) ) ) ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑟 𝐼 𝐶 ) ) ) ) ∧ 𝑠 ∈ 𝑃 ) ∧ ( 𝑠 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 〈“ 𝐵 𝑟 𝑝 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐴 𝑠 𝑞 ”〉 ) ) → ( 𝑟 − 𝐴 ) = ( 𝑠 − 𝐵 ) ) |
| 163 |
|
simp-10l |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ¬ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝐴 ∈ ( 𝐶 𝐼 𝑝 ) ∧ 𝐴 ≠ 𝑝 ) ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝐵 ∈ ( 𝐶 𝐼 𝑞 ) ∧ ( 𝐵 − 𝑞 ) = ( 𝐴 − 𝑝 ) ) ) ∧ 𝑟 ∈ 𝑃 ) ∧ ( 𝑟 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 𝑟 ∈ ( 𝐵 𝐼 𝑝 ) ) ) ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑟 𝐼 𝐶 ) ) ) ) ∧ 𝑠 ∈ 𝑃 ) ∧ ( 𝑠 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 〈“ 𝐵 𝑟 𝑝 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐴 𝑠 𝑞 ”〉 ) ) → 𝜑 ) |
| 164 |
125
|
simpld |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ¬ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝐴 ∈ ( 𝐶 𝐼 𝑝 ) ∧ 𝐴 ≠ 𝑝 ) ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝐵 ∈ ( 𝐶 𝐼 𝑞 ) ∧ ( 𝐵 − 𝑞 ) = ( 𝐴 − 𝑝 ) ) ) ∧ 𝑟 ∈ 𝑃 ) ∧ ( 𝑟 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 𝑟 ∈ ( 𝐵 𝐼 𝑝 ) ) ) ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑟 𝐼 𝐶 ) ) ) ) ∧ 𝑠 ∈ 𝑃 ) ∧ ( 𝑠 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 〈“ 𝐵 𝑟 𝑝 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐴 𝑠 𝑞 ”〉 ) ) → 𝐴 ∈ ( 𝐶 𝐼 𝑝 ) ) |
| 165 |
1 3 4 53 61 65 118 71 164
|
btwnlng3 |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ¬ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝐴 ∈ ( 𝐶 𝐼 𝑝 ) ∧ 𝐴 ≠ 𝑝 ) ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝐵 ∈ ( 𝐶 𝐼 𝑞 ) ∧ ( 𝐵 − 𝑞 ) = ( 𝐴 − 𝑝 ) ) ) ∧ 𝑟 ∈ 𝑃 ) ∧ ( 𝑟 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 𝑟 ∈ ( 𝐵 𝐼 𝑝 ) ) ) ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑟 𝐼 𝐶 ) ) ) ) ∧ 𝑠 ∈ 𝑃 ) ∧ ( 𝑠 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 〈“ 𝐵 𝑟 𝑝 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐴 𝑠 𝑞 ”〉 ) ) → 𝑝 ∈ ( 𝐶 𝐿 𝐴 ) ) |
| 166 |
1 3 4 53 61 65 64 118 83 165 127
|
ncolncol |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ¬ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝐴 ∈ ( 𝐶 𝐼 𝑝 ) ∧ 𝐴 ≠ 𝑝 ) ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝐵 ∈ ( 𝐶 𝐼 𝑞 ) ∧ ( 𝐵 − 𝑞 ) = ( 𝐴 − 𝑝 ) ) ) ∧ 𝑟 ∈ 𝑃 ) ∧ ( 𝑟 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 𝑟 ∈ ( 𝐵 𝐼 𝑝 ) ) ) ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑟 𝐼 𝐶 ) ) ) ) ∧ 𝑠 ∈ 𝑃 ) ∧ ( 𝑠 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 〈“ 𝐵 𝑟 𝑝 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐴 𝑠 𝑞 ”〉 ) ) → ¬ ( 𝑝 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) |
| 167 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝐵 ∈ ( 𝑝 𝐿 𝐴 ) ∨ 𝑝 = 𝐴 ) ) → 𝐺 ∈ TarskiG ) |
| 168 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝐵 ∈ ( 𝑝 𝐿 𝐴 ) ∨ 𝑝 = 𝐴 ) ) → 𝑝 ∈ 𝑃 ) |
| 169 |
8
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝐵 ∈ ( 𝑝 𝐿 𝐴 ) ∨ 𝑝 = 𝐴 ) ) → 𝐴 ∈ 𝑃 ) |
| 170 |
9
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝐵 ∈ ( 𝑝 𝐿 𝐴 ) ∨ 𝑝 = 𝐴 ) ) → 𝐵 ∈ 𝑃 ) |
| 171 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝐵 ∈ ( 𝑝 𝐿 𝐴 ) ∨ 𝑝 = 𝐴 ) ) → ( 𝐵 ∈ ( 𝑝 𝐿 𝐴 ) ∨ 𝑝 = 𝐴 ) ) |
| 172 |
1 4 3 167 168 169 170 171
|
colrot1 |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝐵 ∈ ( 𝑝 𝐿 𝐴 ) ∨ 𝑝 = 𝐴 ) ) → ( 𝑝 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) |
| 173 |
172
|
stoic1a |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ 𝑃 ) ∧ ¬ ( 𝑝 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) → ¬ ( 𝐵 ∈ ( 𝑝 𝐿 𝐴 ) ∨ 𝑝 = 𝐴 ) ) |
| 174 |
163 118 166 173
|
syl21anc |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ¬ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝐴 ∈ ( 𝐶 𝐼 𝑝 ) ∧ 𝐴 ≠ 𝑝 ) ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝐵 ∈ ( 𝐶 𝐼 𝑞 ) ∧ ( 𝐵 − 𝑞 ) = ( 𝐴 − 𝑝 ) ) ) ∧ 𝑟 ∈ 𝑃 ) ∧ ( 𝑟 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 𝑟 ∈ ( 𝐵 𝐼 𝑝 ) ) ) ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑟 𝐼 𝐶 ) ) ) ) ∧ 𝑠 ∈ 𝑃 ) ∧ ( 𝑠 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 〈“ 𝐵 𝑟 𝑝 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐴 𝑠 𝑞 ”〉 ) ) → ¬ ( 𝐵 ∈ ( 𝑝 𝐿 𝐴 ) ∨ 𝑝 = 𝐴 ) ) |
| 175 |
1 3 4 53 118 65 64 166
|
ncolne2 |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ¬ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝐴 ∈ ( 𝐶 𝐼 𝑝 ) ∧ 𝐴 ≠ 𝑝 ) ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝐵 ∈ ( 𝐶 𝐼 𝑞 ) ∧ ( 𝐵 − 𝑞 ) = ( 𝐴 − 𝑝 ) ) ) ∧ 𝑟 ∈ 𝑃 ) ∧ ( 𝑟 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 𝑟 ∈ ( 𝐵 𝐼 𝑝 ) ) ) ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑟 𝐼 𝐶 ) ) ) ) ∧ 𝑠 ∈ 𝑃 ) ∧ ( 𝑠 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 〈“ 𝐵 𝑟 𝑝 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐴 𝑠 𝑞 ”〉 ) ) → 𝑝 ≠ 𝐵 ) |
| 176 |
175
|
necomd |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ¬ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝐴 ∈ ( 𝐶 𝐼 𝑝 ) ∧ 𝐴 ≠ 𝑝 ) ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝐵 ∈ ( 𝐶 𝐼 𝑞 ) ∧ ( 𝐵 − 𝑞 ) = ( 𝐴 − 𝑝 ) ) ) ∧ 𝑟 ∈ 𝑃 ) ∧ ( 𝑟 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 𝑟 ∈ ( 𝐵 𝐼 𝑝 ) ) ) ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑟 𝐼 𝐶 ) ) ) ) ∧ 𝑠 ∈ 𝑃 ) ∧ ( 𝑠 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 〈“ 𝐵 𝑟 𝑝 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐴 𝑠 𝑞 ”〉 ) ) → 𝐵 ≠ 𝑝 ) |
| 177 |
176
|
neneqd |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ¬ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝐴 ∈ ( 𝐶 𝐼 𝑝 ) ∧ 𝐴 ≠ 𝑝 ) ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝐵 ∈ ( 𝐶 𝐼 𝑞 ) ∧ ( 𝐵 − 𝑞 ) = ( 𝐴 − 𝑝 ) ) ) ∧ 𝑟 ∈ 𝑃 ) ∧ ( 𝑟 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 𝑟 ∈ ( 𝐵 𝐼 𝑝 ) ) ) ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑟 𝐼 𝐶 ) ) ) ) ∧ 𝑠 ∈ 𝑃 ) ∧ ( 𝑠 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 〈“ 𝐵 𝑟 𝑝 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐴 𝑠 𝑞 ”〉 ) ) → ¬ 𝐵 = 𝑝 ) |
| 178 |
1 4 3 53 65 81 55 133
|
btwncolg1 |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ¬ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝐴 ∈ ( 𝐶 𝐼 𝑝 ) ∧ 𝐴 ≠ 𝑝 ) ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝐵 ∈ ( 𝐶 𝐼 𝑞 ) ∧ ( 𝐵 − 𝑞 ) = ( 𝐴 − 𝑝 ) ) ) ∧ 𝑟 ∈ 𝑃 ) ∧ ( 𝑟 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 𝑟 ∈ ( 𝐵 𝐼 𝑝 ) ) ) ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑟 𝐼 𝐶 ) ) ) ) ∧ 𝑠 ∈ 𝑃 ) ∧ ( 𝑠 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 〈“ 𝐵 𝑟 𝑝 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐴 𝑠 𝑞 ”〉 ) ) → ( 𝑟 ∈ ( 𝐴 𝐿 𝑞 ) ∨ 𝐴 = 𝑞 ) ) |
| 179 |
1 2 3 53 55 65 145 64 162
|
tgcgrcomlr |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ¬ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝐴 ∈ ( 𝐶 𝐼 𝑝 ) ∧ 𝐴 ≠ 𝑝 ) ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝐵 ∈ ( 𝐶 𝐼 𝑞 ) ∧ ( 𝐵 − 𝑞 ) = ( 𝐴 − 𝑝 ) ) ) ∧ 𝑟 ∈ 𝑃 ) ∧ ( 𝑟 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 𝑟 ∈ ( 𝐵 𝐼 𝑝 ) ) ) ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑟 𝐼 𝐶 ) ) ) ) ∧ 𝑠 ∈ 𝑃 ) ∧ ( 𝑠 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 〈“ 𝐵 𝑟 𝑝 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐴 𝑠 𝑞 ”〉 ) ) → ( 𝐴 − 𝑟 ) = ( 𝐵 − 𝑠 ) ) |
| 180 |
120
|
ad2antrr |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ¬ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝐴 ∈ ( 𝐶 𝐼 𝑝 ) ∧ 𝐴 ≠ 𝑝 ) ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝐵 ∈ ( 𝐶 𝐼 𝑞 ) ∧ ( 𝐵 − 𝑞 ) = ( 𝐴 − 𝑝 ) ) ) ∧ 𝑟 ∈ 𝑃 ) ∧ ( 𝑟 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 𝑟 ∈ ( 𝐵 𝐼 𝑝 ) ) ) ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑟 𝐼 𝐶 ) ) ) ) ∧ 𝑠 ∈ 𝑃 ) ∧ ( 𝑠 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 〈“ 𝐵 𝑟 𝑝 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐴 𝑠 𝑞 ”〉 ) ) → ( 𝐵 − 𝑞 ) = ( 𝐴 − 𝑝 ) ) |
| 181 |
1 2 3 53 118 81
|
axtgcgrrflx |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ¬ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝐴 ∈ ( 𝐶 𝐼 𝑝 ) ∧ 𝐴 ≠ 𝑝 ) ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝐵 ∈ ( 𝐶 𝐼 𝑞 ) ∧ ( 𝐵 − 𝑞 ) = ( 𝐴 − 𝑝 ) ) ) ∧ 𝑟 ∈ 𝑃 ) ∧ ( 𝑟 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 𝑟 ∈ ( 𝐵 𝐼 𝑝 ) ) ) ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑟 𝐼 𝐶 ) ) ) ) ∧ 𝑠 ∈ 𝑃 ) ∧ ( 𝑠 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 〈“ 𝐵 𝑟 𝑝 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐴 𝑠 𝑞 ”〉 ) ) → ( 𝑝 − 𝑞 ) = ( 𝑞 − 𝑝 ) ) |
| 182 |
1 2 3 53 64 55 118 81 65 145 81 118 148 149 158 160 180 181
|
tgifscgr |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ¬ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝐴 ∈ ( 𝐶 𝐼 𝑝 ) ∧ 𝐴 ≠ 𝑝 ) ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝐵 ∈ ( 𝐶 𝐼 𝑞 ) ∧ ( 𝐵 − 𝑞 ) = ( 𝐴 − 𝑝 ) ) ) ∧ 𝑟 ∈ 𝑃 ) ∧ ( 𝑟 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 𝑟 ∈ ( 𝐵 𝐼 𝑝 ) ) ) ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑟 𝐼 𝐶 ) ) ) ) ∧ 𝑠 ∈ 𝑃 ) ∧ ( 𝑠 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 〈“ 𝐵 𝑟 𝑝 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐴 𝑠 𝑞 ”〉 ) ) → ( 𝑟 − 𝑞 ) = ( 𝑠 − 𝑝 ) ) |
| 183 |
1 2 3 53 65 145 81 149
|
tgbtwncom |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ¬ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝐴 ∈ ( 𝐶 𝐼 𝑝 ) ∧ 𝐴 ≠ 𝑝 ) ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝐵 ∈ ( 𝐶 𝐼 𝑞 ) ∧ ( 𝐵 − 𝑞 ) = ( 𝐴 − 𝑝 ) ) ) ∧ 𝑟 ∈ 𝑃 ) ∧ ( 𝑟 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 𝑟 ∈ ( 𝐵 𝐼 𝑝 ) ) ) ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑟 𝐼 𝐶 ) ) ) ) ∧ 𝑠 ∈ 𝑃 ) ∧ ( 𝑠 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 〈“ 𝐵 𝑟 𝑝 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐴 𝑠 𝑞 ”〉 ) ) → 𝑠 ∈ ( 𝑞 𝐼 𝐴 ) ) |
| 184 |
1 2 3 42 52 54 117 147
|
tgbtwncom |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ ¬ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝐴 ∈ ( 𝐶 𝐼 𝑝 ) ∧ 𝐴 ≠ 𝑝 ) ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝐵 ∈ ( 𝐶 𝐼 𝑞 ) ∧ ( 𝐵 − 𝑞 ) = ( 𝐴 − 𝑝 ) ) ) ∧ 𝑟 ∈ 𝑃 ) ∧ ( 𝑟 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 𝑟 ∈ ( 𝐵 𝐼 𝑝 ) ) ) ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑟 𝐼 𝐶 ) ) ) ) → 𝑟 ∈ ( 𝑝 𝐼 𝐵 ) ) |
| 185 |
184
|
ad2antrr |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ¬ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝐴 ∈ ( 𝐶 𝐼 𝑝 ) ∧ 𝐴 ≠ 𝑝 ) ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝐵 ∈ ( 𝐶 𝐼 𝑞 ) ∧ ( 𝐵 − 𝑞 ) = ( 𝐴 − 𝑝 ) ) ) ∧ 𝑟 ∈ 𝑃 ) ∧ ( 𝑟 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 𝑟 ∈ ( 𝐵 𝐼 𝑝 ) ) ) ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑟 𝐼 𝐶 ) ) ) ) ∧ 𝑠 ∈ 𝑃 ) ∧ ( 𝑠 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 〈“ 𝐵 𝑟 𝑝 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐴 𝑠 𝑞 ”〉 ) ) → 𝑟 ∈ ( 𝑝 𝐼 𝐵 ) ) |
| 186 |
160
|
eqcomd |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ¬ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝐴 ∈ ( 𝐶 𝐼 𝑝 ) ∧ 𝐴 ≠ 𝑝 ) ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝐵 ∈ ( 𝐶 𝐼 𝑞 ) ∧ ( 𝐵 − 𝑞 ) = ( 𝐴 − 𝑝 ) ) ) ∧ 𝑟 ∈ 𝑃 ) ∧ ( 𝑟 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 𝑟 ∈ ( 𝐵 𝐼 𝑝 ) ) ) ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑟 𝐼 𝐶 ) ) ) ) ∧ 𝑠 ∈ 𝑃 ) ∧ ( 𝑠 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 〈“ 𝐵 𝑟 𝑝 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐴 𝑠 𝑞 ”〉 ) ) → ( 𝑠 − 𝑞 ) = ( 𝑟 − 𝑝 ) ) |
| 187 |
1 2 3 53 145 81 55 118 186
|
tgcgrcomlr |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ¬ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝐴 ∈ ( 𝐶 𝐼 𝑝 ) ∧ 𝐴 ≠ 𝑝 ) ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝐵 ∈ ( 𝐶 𝐼 𝑞 ) ∧ ( 𝐵 − 𝑞 ) = ( 𝐴 − 𝑝 ) ) ) ∧ 𝑟 ∈ 𝑃 ) ∧ ( 𝑟 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 𝑟 ∈ ( 𝐵 𝐼 𝑝 ) ) ) ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑟 𝐼 𝐶 ) ) ) ) ∧ 𝑠 ∈ 𝑃 ) ∧ ( 𝑠 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 〈“ 𝐵 𝑟 𝑝 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐴 𝑠 𝑞 ”〉 ) ) → ( 𝑞 − 𝑠 ) = ( 𝑝 − 𝑟 ) ) |
| 188 |
1 2 3 63 53 64 55 118 65 145 81 159
|
cgr3simp1 |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ¬ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝐴 ∈ ( 𝐶 𝐼 𝑝 ) ∧ 𝐴 ≠ 𝑝 ) ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝐵 ∈ ( 𝐶 𝐼 𝑞 ) ∧ ( 𝐵 − 𝑞 ) = ( 𝐴 − 𝑝 ) ) ) ∧ 𝑟 ∈ 𝑃 ) ∧ ( 𝑟 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 𝑟 ∈ ( 𝐵 𝐼 𝑝 ) ) ) ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑟 𝐼 𝐶 ) ) ) ) ∧ 𝑠 ∈ 𝑃 ) ∧ ( 𝑠 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 〈“ 𝐵 𝑟 𝑝 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐴 𝑠 𝑞 ”〉 ) ) → ( 𝐵 − 𝑟 ) = ( 𝐴 − 𝑠 ) ) |
| 189 |
188
|
eqcomd |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ¬ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝐴 ∈ ( 𝐶 𝐼 𝑝 ) ∧ 𝐴 ≠ 𝑝 ) ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝐵 ∈ ( 𝐶 𝐼 𝑞 ) ∧ ( 𝐵 − 𝑞 ) = ( 𝐴 − 𝑝 ) ) ) ∧ 𝑟 ∈ 𝑃 ) ∧ ( 𝑟 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 𝑟 ∈ ( 𝐵 𝐼 𝑝 ) ) ) ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑟 𝐼 𝐶 ) ) ) ) ∧ 𝑠 ∈ 𝑃 ) ∧ ( 𝑠 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 〈“ 𝐵 𝑟 𝑝 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐴 𝑠 𝑞 ”〉 ) ) → ( 𝐴 − 𝑠 ) = ( 𝐵 − 𝑟 ) ) |
| 190 |
1 2 3 53 65 145 64 55 189
|
tgcgrcomlr |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ¬ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝐴 ∈ ( 𝐶 𝐼 𝑝 ) ∧ 𝐴 ≠ 𝑝 ) ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝐵 ∈ ( 𝐶 𝐼 𝑞 ) ∧ ( 𝐵 − 𝑞 ) = ( 𝐴 − 𝑝 ) ) ) ∧ 𝑟 ∈ 𝑃 ) ∧ ( 𝑟 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 𝑟 ∈ ( 𝐵 𝐼 𝑝 ) ) ) ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑟 𝐼 𝐶 ) ) ) ) ∧ 𝑠 ∈ 𝑃 ) ∧ ( 𝑠 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 〈“ 𝐵 𝑟 𝑝 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐴 𝑠 𝑞 ”〉 ) ) → ( 𝑠 − 𝐴 ) = ( 𝑟 − 𝐵 ) ) |
| 191 |
1 2 3 53 81 145 65 118 55 64 183 185 187 190
|
tgcgrextend |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ¬ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝐴 ∈ ( 𝐶 𝐼 𝑝 ) ∧ 𝐴 ≠ 𝑝 ) ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝐵 ∈ ( 𝐶 𝐼 𝑞 ) ∧ ( 𝐵 − 𝑞 ) = ( 𝐴 − 𝑝 ) ) ) ∧ 𝑟 ∈ 𝑃 ) ∧ ( 𝑟 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 𝑟 ∈ ( 𝐵 𝐼 𝑝 ) ) ) ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑟 𝐼 𝐶 ) ) ) ) ∧ 𝑠 ∈ 𝑃 ) ∧ ( 𝑠 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 〈“ 𝐵 𝑟 𝑝 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐴 𝑠 𝑞 ”〉 ) ) → ( 𝑞 − 𝐴 ) = ( 𝑝 − 𝐵 ) ) |
| 192 |
1 2 63 53 65 55 81 64 145 118 179 182 191
|
trgcgr |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ¬ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝐴 ∈ ( 𝐶 𝐼 𝑝 ) ∧ 𝐴 ≠ 𝑝 ) ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝐵 ∈ ( 𝐶 𝐼 𝑞 ) ∧ ( 𝐵 − 𝑞 ) = ( 𝐴 − 𝑝 ) ) ) ∧ 𝑟 ∈ 𝑃 ) ∧ ( 𝑟 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 𝑟 ∈ ( 𝐵 𝐼 𝑝 ) ) ) ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑟 𝐼 𝐶 ) ) ) ) ∧ 𝑠 ∈ 𝑃 ) ∧ ( 𝑠 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 〈“ 𝐵 𝑟 𝑝 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐴 𝑠 𝑞 ”〉 ) ) → 〈“ 𝐴 𝑟 𝑞 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐵 𝑠 𝑝 ”〉 ) |
| 193 |
1 4 3 53 65 55 81 63 64 145 118 178 192
|
lnxfr |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ¬ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝐴 ∈ ( 𝐶 𝐼 𝑝 ) ∧ 𝐴 ≠ 𝑝 ) ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝐵 ∈ ( 𝐶 𝐼 𝑞 ) ∧ ( 𝐵 − 𝑞 ) = ( 𝐴 − 𝑝 ) ) ) ∧ 𝑟 ∈ 𝑃 ) ∧ ( 𝑟 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 𝑟 ∈ ( 𝐵 𝐼 𝑝 ) ) ) ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑟 𝐼 𝐶 ) ) ) ) ∧ 𝑠 ∈ 𝑃 ) ∧ ( 𝑠 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 〈“ 𝐵 𝑟 𝑝 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐴 𝑠 𝑞 ”〉 ) ) → ( 𝑠 ∈ ( 𝐵 𝐿 𝑝 ) ∨ 𝐵 = 𝑝 ) ) |
| 194 |
193
|
orcomd |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ¬ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝐴 ∈ ( 𝐶 𝐼 𝑝 ) ∧ 𝐴 ≠ 𝑝 ) ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝐵 ∈ ( 𝐶 𝐼 𝑞 ) ∧ ( 𝐵 − 𝑞 ) = ( 𝐴 − 𝑝 ) ) ) ∧ 𝑟 ∈ 𝑃 ) ∧ ( 𝑟 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 𝑟 ∈ ( 𝐵 𝐼 𝑝 ) ) ) ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑟 𝐼 𝐶 ) ) ) ) ∧ 𝑠 ∈ 𝑃 ) ∧ ( 𝑠 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 〈“ 𝐵 𝑟 𝑝 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐴 𝑠 𝑞 ”〉 ) ) → ( 𝐵 = 𝑝 ∨ 𝑠 ∈ ( 𝐵 𝐿 𝑝 ) ) ) |
| 195 |
194
|
ord |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ¬ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝐴 ∈ ( 𝐶 𝐼 𝑝 ) ∧ 𝐴 ≠ 𝑝 ) ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝐵 ∈ ( 𝐶 𝐼 𝑞 ) ∧ ( 𝐵 − 𝑞 ) = ( 𝐴 − 𝑝 ) ) ) ∧ 𝑟 ∈ 𝑃 ) ∧ ( 𝑟 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 𝑟 ∈ ( 𝐵 𝐼 𝑝 ) ) ) ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑟 𝐼 𝐶 ) ) ) ) ∧ 𝑠 ∈ 𝑃 ) ∧ ( 𝑠 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 〈“ 𝐵 𝑟 𝑝 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐴 𝑠 𝑞 ”〉 ) ) → ( ¬ 𝐵 = 𝑝 → 𝑠 ∈ ( 𝐵 𝐿 𝑝 ) ) ) |
| 196 |
177 195
|
mpd |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ¬ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝐴 ∈ ( 𝐶 𝐼 𝑝 ) ∧ 𝐴 ≠ 𝑝 ) ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝐵 ∈ ( 𝐶 𝐼 𝑞 ) ∧ ( 𝐵 − 𝑞 ) = ( 𝐴 − 𝑝 ) ) ) ∧ 𝑟 ∈ 𝑃 ) ∧ ( 𝑟 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 𝑟 ∈ ( 𝐵 𝐼 𝑝 ) ) ) ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑟 𝐼 𝐶 ) ) ) ) ∧ 𝑠 ∈ 𝑃 ) ∧ ( 𝑠 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 〈“ 𝐵 𝑟 𝑝 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐴 𝑠 𝑞 ”〉 ) ) → 𝑠 ∈ ( 𝐵 𝐿 𝑝 ) ) |
| 197 |
1 3 4 53 64 118 55 176 148
|
btwnlng1 |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ¬ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝐴 ∈ ( 𝐶 𝐼 𝑝 ) ∧ 𝐴 ≠ 𝑝 ) ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝐵 ∈ ( 𝐶 𝐼 𝑞 ) ∧ ( 𝐵 − 𝑞 ) = ( 𝐴 − 𝑝 ) ) ) ∧ 𝑟 ∈ 𝑃 ) ∧ ( 𝑟 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 𝑟 ∈ ( 𝐵 𝐼 𝑝 ) ) ) ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑟 𝐼 𝐶 ) ) ) ) ∧ 𝑠 ∈ 𝑃 ) ∧ ( 𝑠 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 〈“ 𝐵 𝑟 𝑝 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐴 𝑠 𝑞 ”〉 ) ) → 𝑟 ∈ ( 𝐵 𝐿 𝑝 ) ) |
| 198 |
1 3 4 53 65 81 145 131 149
|
btwnlng1 |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ¬ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝐴 ∈ ( 𝐶 𝐼 𝑝 ) ∧ 𝐴 ≠ 𝑝 ) ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝐵 ∈ ( 𝐶 𝐼 𝑞 ) ∧ ( 𝐵 − 𝑞 ) = ( 𝐴 − 𝑝 ) ) ) ∧ 𝑟 ∈ 𝑃 ) ∧ ( 𝑟 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 𝑟 ∈ ( 𝐵 𝐼 𝑝 ) ) ) ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑟 𝐼 𝐶 ) ) ) ) ∧ 𝑠 ∈ 𝑃 ) ∧ ( 𝑠 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 〈“ 𝐵 𝑟 𝑝 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐴 𝑠 𝑞 ”〉 ) ) → 𝑠 ∈ ( 𝐴 𝐿 𝑞 ) ) |
| 199 |
1 3 4 53 64 118 65 81 174 196 197 198 134
|
tglineinteq |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ¬ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝐴 ∈ ( 𝐶 𝐼 𝑝 ) ∧ 𝐴 ≠ 𝑝 ) ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝐵 ∈ ( 𝐶 𝐼 𝑞 ) ∧ ( 𝐵 − 𝑞 ) = ( 𝐴 − 𝑝 ) ) ) ∧ 𝑟 ∈ 𝑃 ) ∧ ( 𝑟 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 𝑟 ∈ ( 𝐵 𝐼 𝑝 ) ) ) ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑟 𝐼 𝐶 ) ) ) ) ∧ 𝑠 ∈ 𝑃 ) ∧ ( 𝑠 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 〈“ 𝐵 𝑟 𝑝 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐴 𝑠 𝑞 ”〉 ) ) → 𝑠 = 𝑟 ) |
| 200 |
199
|
oveq1d |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ¬ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝐴 ∈ ( 𝐶 𝐼 𝑝 ) ∧ 𝐴 ≠ 𝑝 ) ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝐵 ∈ ( 𝐶 𝐼 𝑞 ) ∧ ( 𝐵 − 𝑞 ) = ( 𝐴 − 𝑝 ) ) ) ∧ 𝑟 ∈ 𝑃 ) ∧ ( 𝑟 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 𝑟 ∈ ( 𝐵 𝐼 𝑝 ) ) ) ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑟 𝐼 𝐶 ) ) ) ) ∧ 𝑠 ∈ 𝑃 ) ∧ ( 𝑠 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 〈“ 𝐵 𝑟 𝑝 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐴 𝑠 𝑞 ”〉 ) ) → ( 𝑠 − 𝐵 ) = ( 𝑟 − 𝐵 ) ) |
| 201 |
162 200
|
eqtr2d |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ¬ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝐴 ∈ ( 𝐶 𝐼 𝑝 ) ∧ 𝐴 ≠ 𝑝 ) ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝐵 ∈ ( 𝐶 𝐼 𝑞 ) ∧ ( 𝐵 − 𝑞 ) = ( 𝐴 − 𝑝 ) ) ) ∧ 𝑟 ∈ 𝑃 ) ∧ ( 𝑟 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 𝑟 ∈ ( 𝐵 𝐼 𝑝 ) ) ) ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑟 𝐼 𝐶 ) ) ) ) ∧ 𝑠 ∈ 𝑃 ) ∧ ( 𝑠 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 〈“ 𝐵 𝑟 𝑝 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐴 𝑠 𝑞 ”〉 ) ) → ( 𝑟 − 𝐵 ) = ( 𝑟 − 𝐴 ) ) |
| 202 |
154
|
ad2antrr |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ¬ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝐴 ∈ ( 𝐶 𝐼 𝑝 ) ∧ 𝐴 ≠ 𝑝 ) ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝐵 ∈ ( 𝐶 𝐼 𝑞 ) ∧ ( 𝐵 − 𝑞 ) = ( 𝐴 − 𝑝 ) ) ) ∧ 𝑟 ∈ 𝑃 ) ∧ ( 𝑟 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 𝑟 ∈ ( 𝐵 𝐼 𝑝 ) ) ) ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑟 𝐼 𝐶 ) ) ) ) ∧ 𝑠 ∈ 𝑃 ) ∧ ( 𝑠 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 〈“ 𝐵 𝑟 𝑝 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐴 𝑠 𝑞 ”〉 ) ) → ( 𝐶 − 𝐵 ) = ( 𝐶 − 𝐴 ) ) |
| 203 |
1 4 3 53 55 61 62 63 64 65 2 140 144 201 202
|
lncgr |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ ¬ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝐴 ∈ ( 𝐶 𝐼 𝑝 ) ∧ 𝐴 ≠ 𝑝 ) ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝐵 ∈ ( 𝐶 𝐼 𝑞 ) ∧ ( 𝐵 − 𝑞 ) = ( 𝐴 − 𝑝 ) ) ) ∧ 𝑟 ∈ 𝑃 ) ∧ ( 𝑟 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 𝑟 ∈ ( 𝐵 𝐼 𝑝 ) ) ) ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑟 𝐼 𝐶 ) ) ) ) ∧ 𝑠 ∈ 𝑃 ) ∧ ( 𝑠 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 〈“ 𝐵 𝑟 𝑝 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐴 𝑠 𝑞 ”〉 ) ) → ( 𝑥 − 𝐵 ) = ( 𝑥 − 𝐴 ) ) |
| 204 |
1 2 3 63 42 52 54 117 48 80 147 157
|
tgcgrxfr |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ ¬ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝐴 ∈ ( 𝐶 𝐼 𝑝 ) ∧ 𝐴 ≠ 𝑝 ) ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝐵 ∈ ( 𝐶 𝐼 𝑞 ) ∧ ( 𝐵 − 𝑞 ) = ( 𝐴 − 𝑝 ) ) ) ∧ 𝑟 ∈ 𝑃 ) ∧ ( 𝑟 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 𝑟 ∈ ( 𝐵 𝐼 𝑝 ) ) ) ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑟 𝐼 𝐶 ) ) ) ) → ∃ 𝑠 ∈ 𝑃 ( 𝑠 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 〈“ 𝐵 𝑟 𝑝 ”〉 ( cgrG ‘ 𝐺 ) 〈“ 𝐴 𝑠 𝑞 ”〉 ) ) |
| 205 |
203 204
|
r19.29a |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ ¬ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝐴 ∈ ( 𝐶 𝐼 𝑝 ) ∧ 𝐴 ≠ 𝑝 ) ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝐵 ∈ ( 𝐶 𝐼 𝑞 ) ∧ ( 𝐵 − 𝑞 ) = ( 𝐴 − 𝑝 ) ) ) ∧ 𝑟 ∈ 𝑃 ) ∧ ( 𝑟 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 𝑟 ∈ ( 𝐵 𝐼 𝑝 ) ) ) ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑟 𝐼 𝐶 ) ) ) ) → ( 𝑥 − 𝐵 ) = ( 𝑥 − 𝐴 ) ) |
| 206 |
|
simprrl |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ ¬ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝐴 ∈ ( 𝐶 𝐼 𝑝 ) ∧ 𝐴 ≠ 𝑝 ) ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝐵 ∈ ( 𝐶 𝐼 𝑞 ) ∧ ( 𝐵 − 𝑞 ) = ( 𝐴 − 𝑝 ) ) ) ∧ 𝑟 ∈ 𝑃 ) ∧ ( 𝑟 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 𝑟 ∈ ( 𝐵 𝐼 𝑝 ) ) ) ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑟 𝐼 𝐶 ) ) ) ) → 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ) |
| 207 |
1 2 3 42 48 43 52 206
|
tgbtwncom |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ ¬ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝐴 ∈ ( 𝐶 𝐼 𝑝 ) ∧ 𝐴 ≠ 𝑝 ) ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝐵 ∈ ( 𝐶 𝐼 𝑞 ) ∧ ( 𝐵 − 𝑞 ) = ( 𝐴 − 𝑝 ) ) ) ∧ 𝑟 ∈ 𝑃 ) ∧ ( 𝑟 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 𝑟 ∈ ( 𝐵 𝐼 𝑝 ) ) ) ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑟 𝐼 𝐶 ) ) ) ) → 𝑥 ∈ ( 𝐵 𝐼 𝐴 ) ) |
| 208 |
1 2 3 4 5 42 43 7 48 52 205 207
|
ismir |
⊢ ( ( ( ( ( ( ( ( ( 𝜑 ∧ ¬ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝐴 ∈ ( 𝐶 𝐼 𝑝 ) ∧ 𝐴 ≠ 𝑝 ) ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝐵 ∈ ( 𝐶 𝐼 𝑞 ) ∧ ( 𝐵 − 𝑞 ) = ( 𝐴 − 𝑝 ) ) ) ∧ 𝑟 ∈ 𝑃 ) ∧ ( 𝑟 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 𝑟 ∈ ( 𝐵 𝐼 𝑝 ) ) ) ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑟 𝐼 𝐶 ) ) ) ) → 𝐵 = ( 𝑀 ‘ 𝐴 ) ) |
| 209 |
|
simplr |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ ¬ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝐴 ∈ ( 𝐶 𝐼 𝑝 ) ∧ 𝐴 ≠ 𝑝 ) ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝐵 ∈ ( 𝐶 𝐼 𝑞 ) ∧ ( 𝐵 − 𝑞 ) = ( 𝐴 − 𝑝 ) ) ) ∧ 𝑟 ∈ 𝑃 ) ∧ ( 𝑟 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 𝑟 ∈ ( 𝐵 𝐼 𝑝 ) ) ) → 𝑟 ∈ 𝑃 ) |
| 210 |
|
simprr |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ ¬ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝐴 ∈ ( 𝐶 𝐼 𝑝 ) ∧ 𝐴 ≠ 𝑝 ) ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝐵 ∈ ( 𝐶 𝐼 𝑞 ) ∧ ( 𝐵 − 𝑞 ) = ( 𝐴 − 𝑝 ) ) ) ∧ 𝑟 ∈ 𝑃 ) ∧ ( 𝑟 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 𝑟 ∈ ( 𝐵 𝐼 𝑝 ) ) ) → 𝑟 ∈ ( 𝐵 𝐼 𝑝 ) ) |
| 211 |
1 2 3 41 59 51 116 47 209 151 210
|
axtgpasch |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ ¬ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝐴 ∈ ( 𝐶 𝐼 𝑝 ) ∧ 𝐴 ≠ 𝑝 ) ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝐵 ∈ ( 𝐶 𝐼 𝑞 ) ∧ ( 𝐵 − 𝑞 ) = ( 𝐴 − 𝑝 ) ) ) ∧ 𝑟 ∈ 𝑃 ) ∧ ( 𝑟 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 𝑟 ∈ ( 𝐵 𝐼 𝑝 ) ) ) → ∃ 𝑥 ∈ 𝑃 ( 𝑥 ∈ ( 𝐴 𝐼 𝐵 ) ∧ 𝑥 ∈ ( 𝑟 𝐼 𝐶 ) ) ) |
| 212 |
208 211
|
reximddv |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ ¬ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝐴 ∈ ( 𝐶 𝐼 𝑝 ) ∧ 𝐴 ≠ 𝑝 ) ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝐵 ∈ ( 𝐶 𝐼 𝑞 ) ∧ ( 𝐵 − 𝑞 ) = ( 𝐴 − 𝑝 ) ) ) ∧ 𝑟 ∈ 𝑃 ) ∧ ( 𝑟 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 𝑟 ∈ ( 𝐵 𝐼 𝑝 ) ) ) → ∃ 𝑥 ∈ 𝑃 𝐵 = ( 𝑀 ‘ 𝐴 ) ) |
| 213 |
1 2 3 40 58 46 115 150
|
tgbtwncom |
⊢ ( ( ( ( ( ( 𝜑 ∧ ¬ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝐴 ∈ ( 𝐶 𝐼 𝑝 ) ∧ 𝐴 ≠ 𝑝 ) ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝐵 ∈ ( 𝐶 𝐼 𝑞 ) ∧ ( 𝐵 − 𝑞 ) = ( 𝐴 − 𝑝 ) ) ) → 𝐴 ∈ ( 𝑝 𝐼 𝐶 ) ) |
| 214 |
1 2 3 40 58 50 79 95
|
tgbtwncom |
⊢ ( ( ( ( ( ( 𝜑 ∧ ¬ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝐴 ∈ ( 𝐶 𝐼 𝑝 ) ∧ 𝐴 ≠ 𝑝 ) ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝐵 ∈ ( 𝐶 𝐼 𝑞 ) ∧ ( 𝐵 − 𝑞 ) = ( 𝐴 − 𝑝 ) ) ) → 𝐵 ∈ ( 𝑞 𝐼 𝐶 ) ) |
| 215 |
1 2 3 40 115 79 58 46 50 213 214
|
axtgpasch |
⊢ ( ( ( ( ( ( 𝜑 ∧ ¬ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝐴 ∈ ( 𝐶 𝐼 𝑝 ) ∧ 𝐴 ≠ 𝑝 ) ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝐵 ∈ ( 𝐶 𝐼 𝑞 ) ∧ ( 𝐵 − 𝑞 ) = ( 𝐴 − 𝑝 ) ) ) → ∃ 𝑟 ∈ 𝑃 ( 𝑟 ∈ ( 𝐴 𝐼 𝑞 ) ∧ 𝑟 ∈ ( 𝐵 𝐼 𝑝 ) ) ) |
| 216 |
212 215
|
r19.29a |
⊢ ( ( ( ( ( ( 𝜑 ∧ ¬ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝐴 ∈ ( 𝐶 𝐼 𝑝 ) ∧ 𝐴 ≠ 𝑝 ) ) ∧ 𝑞 ∈ 𝑃 ) ∧ ( 𝐵 ∈ ( 𝐶 𝐼 𝑞 ) ∧ ( 𝐵 − 𝑞 ) = ( 𝐴 − 𝑝 ) ) ) → ∃ 𝑥 ∈ 𝑃 𝐵 = ( 𝑀 ‘ 𝐴 ) ) |
| 217 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ ¬ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝐴 ∈ ( 𝐶 𝐼 𝑝 ) ∧ 𝐴 ≠ 𝑝 ) ) → 𝑝 ∈ 𝑃 ) |
| 218 |
1 2 3 39 57 49 45 217
|
axtgsegcon |
⊢ ( ( ( ( 𝜑 ∧ ¬ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝐴 ∈ ( 𝐶 𝐼 𝑝 ) ∧ 𝐴 ≠ 𝑝 ) ) → ∃ 𝑞 ∈ 𝑃 ( 𝐵 ∈ ( 𝐶 𝐼 𝑞 ) ∧ ( 𝐵 − 𝑞 ) = ( 𝐴 − 𝑝 ) ) ) |
| 219 |
216 218
|
r19.29a |
⊢ ( ( ( ( 𝜑 ∧ ¬ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝐴 ∈ ( 𝐶 𝐼 𝑝 ) ∧ 𝐴 ≠ 𝑝 ) ) → ∃ 𝑥 ∈ 𝑃 𝐵 = ( 𝑀 ‘ 𝐴 ) ) |
| 220 |
1
|
fvexi |
⊢ 𝑃 ∈ V |
| 221 |
220
|
a1i |
⊢ ( ( 𝜑 ∧ ¬ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) → 𝑃 ∈ V ) |
| 222 |
221 56 44 69
|
nehash2 |
⊢ ( ( 𝜑 ∧ ¬ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) → 2 ≤ ( ♯ ‘ 𝑃 ) ) |
| 223 |
1 2 3 38 56 44 222
|
tgbtwndiff |
⊢ ( ( 𝜑 ∧ ¬ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) → ∃ 𝑝 ∈ 𝑃 ( 𝐴 ∈ ( 𝐶 𝐼 𝑝 ) ∧ 𝐴 ≠ 𝑝 ) ) |
| 224 |
219 223
|
r19.29a |
⊢ ( ( 𝜑 ∧ ¬ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) ) → ∃ 𝑥 ∈ 𝑃 𝐵 = ( 𝑀 ‘ 𝐴 ) ) |
| 225 |
37 224
|
pm2.61dan |
⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝑃 𝐵 = ( 𝑀 ‘ 𝐴 ) ) |