| Step |
Hyp |
Ref |
Expression |
| 1 |
|
colperpex.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
| 2 |
|
colperpex.d |
⊢ − = ( dist ‘ 𝐺 ) |
| 3 |
|
colperpex.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
| 4 |
|
colperpex.l |
⊢ 𝐿 = ( LineG ‘ 𝐺 ) |
| 5 |
|
colperpex.g |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
| 6 |
|
mideu.s |
⊢ 𝑆 = ( pInvG ‘ 𝐺 ) |
| 7 |
|
mideu.1 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑃 ) |
| 8 |
|
mideu.2 |
⊢ ( 𝜑 → 𝐵 ∈ 𝑃 ) |
| 9 |
|
mideulem.1 |
⊢ ( 𝜑 → 𝐴 ≠ 𝐵 ) |
| 10 |
|
mideulem.2 |
⊢ ( 𝜑 → 𝑄 ∈ 𝑃 ) |
| 11 |
|
mideulem.3 |
⊢ ( 𝜑 → 𝑂 ∈ 𝑃 ) |
| 12 |
|
mideulem.4 |
⊢ ( 𝜑 → 𝑇 ∈ 𝑃 ) |
| 13 |
|
mideulem.5 |
⊢ ( 𝜑 → ( 𝐴 𝐿 𝐵 ) ( ⟂G ‘ 𝐺 ) ( 𝑄 𝐿 𝐵 ) ) |
| 14 |
|
mideulem.6 |
⊢ ( 𝜑 → ( 𝐴 𝐿 𝐵 ) ( ⟂G ‘ 𝐺 ) ( 𝐴 𝐿 𝑂 ) ) |
| 15 |
|
mideulem.7 |
⊢ ( 𝜑 → 𝑇 ∈ ( 𝐴 𝐿 𝐵 ) ) |
| 16 |
|
mideulem.8 |
⊢ ( 𝜑 → 𝑇 ∈ ( 𝑄 𝐼 𝑂 ) ) |
| 17 |
|
mideulem.9 |
⊢ ( 𝜑 → ( 𝐴 − 𝑂 ) ( ≤G ‘ 𝐺 ) ( 𝐵 − 𝑄 ) ) |
| 18 |
|
simprrl |
⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ 𝑃 ) ∧ ( 𝑟 ∈ ( 𝐵 𝐼 𝑄 ) ∧ ( 𝐴 − 𝑂 ) = ( 𝐵 − 𝑟 ) ) ) ∧ ( 𝑥 ∈ 𝑃 ∧ ( 𝐵 = ( ( 𝑆 ‘ 𝑥 ) ‘ 𝐴 ) ∧ 𝑂 = ( ( 𝑆 ‘ 𝑥 ) ‘ 𝑟 ) ) ) ) → 𝐵 = ( ( 𝑆 ‘ 𝑥 ) ‘ 𝐴 ) ) |
| 19 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ 𝑃 ) ∧ ( 𝑟 ∈ ( 𝐵 𝐼 𝑄 ) ∧ ( 𝐴 − 𝑂 ) = ( 𝐵 − 𝑟 ) ) ) → 𝐺 ∈ TarskiG ) |
| 20 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ 𝑃 ) ∧ ( 𝑟 ∈ ( 𝐵 𝐼 𝑄 ) ∧ ( 𝐴 − 𝑂 ) = ( 𝐵 − 𝑟 ) ) ) → 𝐴 ∈ 𝑃 ) |
| 21 |
8
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ 𝑃 ) ∧ ( 𝑟 ∈ ( 𝐵 𝐼 𝑄 ) ∧ ( 𝐴 − 𝑂 ) = ( 𝐵 − 𝑟 ) ) ) → 𝐵 ∈ 𝑃 ) |
| 22 |
9
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ 𝑃 ) ∧ ( 𝑟 ∈ ( 𝐵 𝐼 𝑄 ) ∧ ( 𝐴 − 𝑂 ) = ( 𝐵 − 𝑟 ) ) ) → 𝐴 ≠ 𝐵 ) |
| 23 |
10
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ 𝑃 ) ∧ ( 𝑟 ∈ ( 𝐵 𝐼 𝑄 ) ∧ ( 𝐴 − 𝑂 ) = ( 𝐵 − 𝑟 ) ) ) → 𝑄 ∈ 𝑃 ) |
| 24 |
11
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ 𝑃 ) ∧ ( 𝑟 ∈ ( 𝐵 𝐼 𝑄 ) ∧ ( 𝐴 − 𝑂 ) = ( 𝐵 − 𝑟 ) ) ) → 𝑂 ∈ 𝑃 ) |
| 25 |
12
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ 𝑃 ) ∧ ( 𝑟 ∈ ( 𝐵 𝐼 𝑄 ) ∧ ( 𝐴 − 𝑂 ) = ( 𝐵 − 𝑟 ) ) ) → 𝑇 ∈ 𝑃 ) |
| 26 |
13
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ 𝑃 ) ∧ ( 𝑟 ∈ ( 𝐵 𝐼 𝑄 ) ∧ ( 𝐴 − 𝑂 ) = ( 𝐵 − 𝑟 ) ) ) → ( 𝐴 𝐿 𝐵 ) ( ⟂G ‘ 𝐺 ) ( 𝑄 𝐿 𝐵 ) ) |
| 27 |
14
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ 𝑃 ) ∧ ( 𝑟 ∈ ( 𝐵 𝐼 𝑄 ) ∧ ( 𝐴 − 𝑂 ) = ( 𝐵 − 𝑟 ) ) ) → ( 𝐴 𝐿 𝐵 ) ( ⟂G ‘ 𝐺 ) ( 𝐴 𝐿 𝑂 ) ) |
| 28 |
15
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ 𝑃 ) ∧ ( 𝑟 ∈ ( 𝐵 𝐼 𝑄 ) ∧ ( 𝐴 − 𝑂 ) = ( 𝐵 − 𝑟 ) ) ) → 𝑇 ∈ ( 𝐴 𝐿 𝐵 ) ) |
| 29 |
16
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ 𝑃 ) ∧ ( 𝑟 ∈ ( 𝐵 𝐼 𝑄 ) ∧ ( 𝐴 − 𝑂 ) = ( 𝐵 − 𝑟 ) ) ) → 𝑇 ∈ ( 𝑄 𝐼 𝑂 ) ) |
| 30 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ 𝑃 ) ∧ ( 𝑟 ∈ ( 𝐵 𝐼 𝑄 ) ∧ ( 𝐴 − 𝑂 ) = ( 𝐵 − 𝑟 ) ) ) → 𝑟 ∈ 𝑃 ) |
| 31 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ 𝑃 ) ∧ ( 𝑟 ∈ ( 𝐵 𝐼 𝑄 ) ∧ ( 𝐴 − 𝑂 ) = ( 𝐵 − 𝑟 ) ) ) → 𝑟 ∈ ( 𝐵 𝐼 𝑄 ) ) |
| 32 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ 𝑃 ) ∧ ( 𝑟 ∈ ( 𝐵 𝐼 𝑄 ) ∧ ( 𝐴 − 𝑂 ) = ( 𝐵 − 𝑟 ) ) ) → ( 𝐴 − 𝑂 ) = ( 𝐵 − 𝑟 ) ) |
| 33 |
1 2 3 4 19 6 20 21 22 23 24 25 26 27 28 29 30 31 32
|
opphllem |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ 𝑃 ) ∧ ( 𝑟 ∈ ( 𝐵 𝐼 𝑄 ) ∧ ( 𝐴 − 𝑂 ) = ( 𝐵 − 𝑟 ) ) ) → ∃ 𝑥 ∈ 𝑃 ( 𝐵 = ( ( 𝑆 ‘ 𝑥 ) ‘ 𝐴 ) ∧ 𝑂 = ( ( 𝑆 ‘ 𝑥 ) ‘ 𝑟 ) ) ) |
| 34 |
18 33
|
reximddv |
⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ 𝑃 ) ∧ ( 𝑟 ∈ ( 𝐵 𝐼 𝑄 ) ∧ ( 𝐴 − 𝑂 ) = ( 𝐵 − 𝑟 ) ) ) → ∃ 𝑥 ∈ 𝑃 𝐵 = ( ( 𝑆 ‘ 𝑥 ) ‘ 𝐴 ) ) |
| 35 |
|
eqid |
⊢ ( ≤G ‘ 𝐺 ) = ( ≤G ‘ 𝐺 ) |
| 36 |
1 2 3 35 5 7 11 8 10
|
legov |
⊢ ( 𝜑 → ( ( 𝐴 − 𝑂 ) ( ≤G ‘ 𝐺 ) ( 𝐵 − 𝑄 ) ↔ ∃ 𝑟 ∈ 𝑃 ( 𝑟 ∈ ( 𝐵 𝐼 𝑄 ) ∧ ( 𝐴 − 𝑂 ) = ( 𝐵 − 𝑟 ) ) ) ) |
| 37 |
17 36
|
mpbid |
⊢ ( 𝜑 → ∃ 𝑟 ∈ 𝑃 ( 𝑟 ∈ ( 𝐵 𝐼 𝑄 ) ∧ ( 𝐴 − 𝑂 ) = ( 𝐵 − 𝑟 ) ) ) |
| 38 |
34 37
|
r19.29a |
⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝑃 𝐵 = ( ( 𝑆 ‘ 𝑥 ) ‘ 𝐴 ) ) |