Metamath Proof Explorer


Theorem mideulem

Description: Lemma for mideu . We can assume mideulem.9 "without loss of generality". (Contributed by Thierry Arnoux, 25-Nov-2019)

Ref Expression
Hypotheses colperpex.p 𝑃 = ( Base ‘ 𝐺 )
colperpex.d = ( dist ‘ 𝐺 )
colperpex.i 𝐼 = ( Itv ‘ 𝐺 )
colperpex.l 𝐿 = ( LineG ‘ 𝐺 )
colperpex.g ( 𝜑𝐺 ∈ TarskiG )
mideu.s 𝑆 = ( pInvG ‘ 𝐺 )
mideu.1 ( 𝜑𝐴𝑃 )
mideu.2 ( 𝜑𝐵𝑃 )
mideulem.1 ( 𝜑𝐴𝐵 )
mideulem.2 ( 𝜑𝑄𝑃 )
mideulem.3 ( 𝜑𝑂𝑃 )
mideulem.4 ( 𝜑𝑇𝑃 )
mideulem.5 ( 𝜑 → ( 𝐴 𝐿 𝐵 ) ( ⟂G ‘ 𝐺 ) ( 𝑄 𝐿 𝐵 ) )
mideulem.6 ( 𝜑 → ( 𝐴 𝐿 𝐵 ) ( ⟂G ‘ 𝐺 ) ( 𝐴 𝐿 𝑂 ) )
mideulem.7 ( 𝜑𝑇 ∈ ( 𝐴 𝐿 𝐵 ) )
mideulem.8 ( 𝜑𝑇 ∈ ( 𝑄 𝐼 𝑂 ) )
mideulem.9 ( 𝜑 → ( 𝐴 𝑂 ) ( ≤G ‘ 𝐺 ) ( 𝐵 𝑄 ) )
Assertion mideulem ( 𝜑 → ∃ 𝑥𝑃 𝐵 = ( ( 𝑆𝑥 ) ‘ 𝐴 ) )

Proof

Step Hyp Ref Expression
1 colperpex.p 𝑃 = ( Base ‘ 𝐺 )
2 colperpex.d = ( dist ‘ 𝐺 )
3 colperpex.i 𝐼 = ( Itv ‘ 𝐺 )
4 colperpex.l 𝐿 = ( LineG ‘ 𝐺 )
5 colperpex.g ( 𝜑𝐺 ∈ TarskiG )
6 mideu.s 𝑆 = ( pInvG ‘ 𝐺 )
7 mideu.1 ( 𝜑𝐴𝑃 )
8 mideu.2 ( 𝜑𝐵𝑃 )
9 mideulem.1 ( 𝜑𝐴𝐵 )
10 mideulem.2 ( 𝜑𝑄𝑃 )
11 mideulem.3 ( 𝜑𝑂𝑃 )
12 mideulem.4 ( 𝜑𝑇𝑃 )
13 mideulem.5 ( 𝜑 → ( 𝐴 𝐿 𝐵 ) ( ⟂G ‘ 𝐺 ) ( 𝑄 𝐿 𝐵 ) )
14 mideulem.6 ( 𝜑 → ( 𝐴 𝐿 𝐵 ) ( ⟂G ‘ 𝐺 ) ( 𝐴 𝐿 𝑂 ) )
15 mideulem.7 ( 𝜑𝑇 ∈ ( 𝐴 𝐿 𝐵 ) )
16 mideulem.8 ( 𝜑𝑇 ∈ ( 𝑄 𝐼 𝑂 ) )
17 mideulem.9 ( 𝜑 → ( 𝐴 𝑂 ) ( ≤G ‘ 𝐺 ) ( 𝐵 𝑄 ) )
18 simprrl ( ( ( ( 𝜑𝑟𝑃 ) ∧ ( 𝑟 ∈ ( 𝐵 𝐼 𝑄 ) ∧ ( 𝐴 𝑂 ) = ( 𝐵 𝑟 ) ) ) ∧ ( 𝑥𝑃 ∧ ( 𝐵 = ( ( 𝑆𝑥 ) ‘ 𝐴 ) ∧ 𝑂 = ( ( 𝑆𝑥 ) ‘ 𝑟 ) ) ) ) → 𝐵 = ( ( 𝑆𝑥 ) ‘ 𝐴 ) )
19 5 ad2antrr ( ( ( 𝜑𝑟𝑃 ) ∧ ( 𝑟 ∈ ( 𝐵 𝐼 𝑄 ) ∧ ( 𝐴 𝑂 ) = ( 𝐵 𝑟 ) ) ) → 𝐺 ∈ TarskiG )
20 7 ad2antrr ( ( ( 𝜑𝑟𝑃 ) ∧ ( 𝑟 ∈ ( 𝐵 𝐼 𝑄 ) ∧ ( 𝐴 𝑂 ) = ( 𝐵 𝑟 ) ) ) → 𝐴𝑃 )
21 8 ad2antrr ( ( ( 𝜑𝑟𝑃 ) ∧ ( 𝑟 ∈ ( 𝐵 𝐼 𝑄 ) ∧ ( 𝐴 𝑂 ) = ( 𝐵 𝑟 ) ) ) → 𝐵𝑃 )
22 9 ad2antrr ( ( ( 𝜑𝑟𝑃 ) ∧ ( 𝑟 ∈ ( 𝐵 𝐼 𝑄 ) ∧ ( 𝐴 𝑂 ) = ( 𝐵 𝑟 ) ) ) → 𝐴𝐵 )
23 10 ad2antrr ( ( ( 𝜑𝑟𝑃 ) ∧ ( 𝑟 ∈ ( 𝐵 𝐼 𝑄 ) ∧ ( 𝐴 𝑂 ) = ( 𝐵 𝑟 ) ) ) → 𝑄𝑃 )
24 11 ad2antrr ( ( ( 𝜑𝑟𝑃 ) ∧ ( 𝑟 ∈ ( 𝐵 𝐼 𝑄 ) ∧ ( 𝐴 𝑂 ) = ( 𝐵 𝑟 ) ) ) → 𝑂𝑃 )
25 12 ad2antrr ( ( ( 𝜑𝑟𝑃 ) ∧ ( 𝑟 ∈ ( 𝐵 𝐼 𝑄 ) ∧ ( 𝐴 𝑂 ) = ( 𝐵 𝑟 ) ) ) → 𝑇𝑃 )
26 13 ad2antrr ( ( ( 𝜑𝑟𝑃 ) ∧ ( 𝑟 ∈ ( 𝐵 𝐼 𝑄 ) ∧ ( 𝐴 𝑂 ) = ( 𝐵 𝑟 ) ) ) → ( 𝐴 𝐿 𝐵 ) ( ⟂G ‘ 𝐺 ) ( 𝑄 𝐿 𝐵 ) )
27 14 ad2antrr ( ( ( 𝜑𝑟𝑃 ) ∧ ( 𝑟 ∈ ( 𝐵 𝐼 𝑄 ) ∧ ( 𝐴 𝑂 ) = ( 𝐵 𝑟 ) ) ) → ( 𝐴 𝐿 𝐵 ) ( ⟂G ‘ 𝐺 ) ( 𝐴 𝐿 𝑂 ) )
28 15 ad2antrr ( ( ( 𝜑𝑟𝑃 ) ∧ ( 𝑟 ∈ ( 𝐵 𝐼 𝑄 ) ∧ ( 𝐴 𝑂 ) = ( 𝐵 𝑟 ) ) ) → 𝑇 ∈ ( 𝐴 𝐿 𝐵 ) )
29 16 ad2antrr ( ( ( 𝜑𝑟𝑃 ) ∧ ( 𝑟 ∈ ( 𝐵 𝐼 𝑄 ) ∧ ( 𝐴 𝑂 ) = ( 𝐵 𝑟 ) ) ) → 𝑇 ∈ ( 𝑄 𝐼 𝑂 ) )
30 simplr ( ( ( 𝜑𝑟𝑃 ) ∧ ( 𝑟 ∈ ( 𝐵 𝐼 𝑄 ) ∧ ( 𝐴 𝑂 ) = ( 𝐵 𝑟 ) ) ) → 𝑟𝑃 )
31 simprl ( ( ( 𝜑𝑟𝑃 ) ∧ ( 𝑟 ∈ ( 𝐵 𝐼 𝑄 ) ∧ ( 𝐴 𝑂 ) = ( 𝐵 𝑟 ) ) ) → 𝑟 ∈ ( 𝐵 𝐼 𝑄 ) )
32 simprr ( ( ( 𝜑𝑟𝑃 ) ∧ ( 𝑟 ∈ ( 𝐵 𝐼 𝑄 ) ∧ ( 𝐴 𝑂 ) = ( 𝐵 𝑟 ) ) ) → ( 𝐴 𝑂 ) = ( 𝐵 𝑟 ) )
33 1 2 3 4 19 6 20 21 22 23 24 25 26 27 28 29 30 31 32 opphllem ( ( ( 𝜑𝑟𝑃 ) ∧ ( 𝑟 ∈ ( 𝐵 𝐼 𝑄 ) ∧ ( 𝐴 𝑂 ) = ( 𝐵 𝑟 ) ) ) → ∃ 𝑥𝑃 ( 𝐵 = ( ( 𝑆𝑥 ) ‘ 𝐴 ) ∧ 𝑂 = ( ( 𝑆𝑥 ) ‘ 𝑟 ) ) )
34 18 33 reximddv ( ( ( 𝜑𝑟𝑃 ) ∧ ( 𝑟 ∈ ( 𝐵 𝐼 𝑄 ) ∧ ( 𝐴 𝑂 ) = ( 𝐵 𝑟 ) ) ) → ∃ 𝑥𝑃 𝐵 = ( ( 𝑆𝑥 ) ‘ 𝐴 ) )
35 eqid ( ≤G ‘ 𝐺 ) = ( ≤G ‘ 𝐺 )
36 1 2 3 35 5 7 11 8 10 legov ( 𝜑 → ( ( 𝐴 𝑂 ) ( ≤G ‘ 𝐺 ) ( 𝐵 𝑄 ) ↔ ∃ 𝑟𝑃 ( 𝑟 ∈ ( 𝐵 𝐼 𝑄 ) ∧ ( 𝐴 𝑂 ) = ( 𝐵 𝑟 ) ) ) )
37 17 36 mpbid ( 𝜑 → ∃ 𝑟𝑃 ( 𝑟 ∈ ( 𝐵 𝐼 𝑄 ) ∧ ( 𝐴 𝑂 ) = ( 𝐵 𝑟 ) ) )
38 34 37 r19.29a ( 𝜑 → ∃ 𝑥𝑃 𝐵 = ( ( 𝑆𝑥 ) ‘ 𝐴 ) )