Metamath Proof Explorer


Theorem mideulem

Description: Lemma for mideu . We can assume mideulem.9 "without loss of generality". (Contributed by Thierry Arnoux, 25-Nov-2019)

Ref Expression
Hypotheses colperpex.p P=BaseG
colperpex.d -˙=distG
colperpex.i I=ItvG
colperpex.l L=Line𝒢G
colperpex.g φG𝒢Tarski
mideu.s S=pInv𝒢G
mideu.1 φAP
mideu.2 φBP
mideulem.1 φAB
mideulem.2 φQP
mideulem.3 φOP
mideulem.4 φTP
mideulem.5 φALB𝒢GQLB
mideulem.6 φALB𝒢GALO
mideulem.7 φTALB
mideulem.8 φTQIO
mideulem.9 φA-˙O𝒢GB-˙Q
Assertion mideulem φxPB=SxA

Proof

Step Hyp Ref Expression
1 colperpex.p P=BaseG
2 colperpex.d -˙=distG
3 colperpex.i I=ItvG
4 colperpex.l L=Line𝒢G
5 colperpex.g φG𝒢Tarski
6 mideu.s S=pInv𝒢G
7 mideu.1 φAP
8 mideu.2 φBP
9 mideulem.1 φAB
10 mideulem.2 φQP
11 mideulem.3 φOP
12 mideulem.4 φTP
13 mideulem.5 φALB𝒢GQLB
14 mideulem.6 φALB𝒢GALO
15 mideulem.7 φTALB
16 mideulem.8 φTQIO
17 mideulem.9 φA-˙O𝒢GB-˙Q
18 simprrl φrPrBIQA-˙O=B-˙rxPB=SxAO=SxrB=SxA
19 5 ad2antrr φrPrBIQA-˙O=B-˙rG𝒢Tarski
20 7 ad2antrr φrPrBIQA-˙O=B-˙rAP
21 8 ad2antrr φrPrBIQA-˙O=B-˙rBP
22 9 ad2antrr φrPrBIQA-˙O=B-˙rAB
23 10 ad2antrr φrPrBIQA-˙O=B-˙rQP
24 11 ad2antrr φrPrBIQA-˙O=B-˙rOP
25 12 ad2antrr φrPrBIQA-˙O=B-˙rTP
26 13 ad2antrr φrPrBIQA-˙O=B-˙rALB𝒢GQLB
27 14 ad2antrr φrPrBIQA-˙O=B-˙rALB𝒢GALO
28 15 ad2antrr φrPrBIQA-˙O=B-˙rTALB
29 16 ad2antrr φrPrBIQA-˙O=B-˙rTQIO
30 simplr φrPrBIQA-˙O=B-˙rrP
31 simprl φrPrBIQA-˙O=B-˙rrBIQ
32 simprr φrPrBIQA-˙O=B-˙rA-˙O=B-˙r
33 1 2 3 4 19 6 20 21 22 23 24 25 26 27 28 29 30 31 32 opphllem φrPrBIQA-˙O=B-˙rxPB=SxAO=Sxr
34 18 33 reximddv φrPrBIQA-˙O=B-˙rxPB=SxA
35 eqid 𝒢G=𝒢G
36 1 2 3 35 5 7 11 8 10 legov φA-˙O𝒢GB-˙QrPrBIQA-˙O=B-˙r
37 17 36 mpbid φrPrBIQA-˙O=B-˙r
38 34 37 r19.29a φxPB=SxA