Description: Lemma for mideu . We can assume mideulem.9 "without loss of generality". (Contributed by Thierry Arnoux, 25-Nov-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | colperpex.p | |
|
colperpex.d | |
||
colperpex.i | |
||
colperpex.l | |
||
colperpex.g | |
||
mideu.s | |
||
mideu.1 | |
||
mideu.2 | |
||
mideulem.1 | |
||
mideulem.2 | |
||
mideulem.3 | |
||
mideulem.4 | |
||
mideulem.5 | |
||
mideulem.6 | |
||
mideulem.7 | |
||
mideulem.8 | |
||
mideulem.9 | |
||
Assertion | mideulem | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | colperpex.p | |
|
2 | colperpex.d | |
|
3 | colperpex.i | |
|
4 | colperpex.l | |
|
5 | colperpex.g | |
|
6 | mideu.s | |
|
7 | mideu.1 | |
|
8 | mideu.2 | |
|
9 | mideulem.1 | |
|
10 | mideulem.2 | |
|
11 | mideulem.3 | |
|
12 | mideulem.4 | |
|
13 | mideulem.5 | |
|
14 | mideulem.6 | |
|
15 | mideulem.7 | |
|
16 | mideulem.8 | |
|
17 | mideulem.9 | |
|
18 | simprrl | |
|
19 | 5 | ad2antrr | |
20 | 7 | ad2antrr | |
21 | 8 | ad2antrr | |
22 | 9 | ad2antrr | |
23 | 10 | ad2antrr | |
24 | 11 | ad2antrr | |
25 | 12 | ad2antrr | |
26 | 13 | ad2antrr | |
27 | 14 | ad2antrr | |
28 | 15 | ad2antrr | |
29 | 16 | ad2antrr | |
30 | simplr | |
|
31 | simprl | |
|
32 | simprr | |
|
33 | 1 2 3 4 19 6 20 21 22 23 24 25 26 27 28 29 30 31 32 | opphllem | |
34 | 18 33 | reximddv | |
35 | eqid | |
|
36 | 1 2 3 35 5 7 11 8 10 | legov | |
37 | 17 36 | mpbid | |
38 | 34 37 | r19.29a | |