| Step |
Hyp |
Ref |
Expression |
| 1 |
|
colperpex.p |
|- P = ( Base ` G ) |
| 2 |
|
colperpex.d |
|- .- = ( dist ` G ) |
| 3 |
|
colperpex.i |
|- I = ( Itv ` G ) |
| 4 |
|
colperpex.l |
|- L = ( LineG ` G ) |
| 5 |
|
colperpex.g |
|- ( ph -> G e. TarskiG ) |
| 6 |
|
mideu.s |
|- S = ( pInvG ` G ) |
| 7 |
|
mideu.1 |
|- ( ph -> A e. P ) |
| 8 |
|
mideu.2 |
|- ( ph -> B e. P ) |
| 9 |
|
mideulem.1 |
|- ( ph -> A =/= B ) |
| 10 |
|
mideulem.2 |
|- ( ph -> Q e. P ) |
| 11 |
|
mideulem.3 |
|- ( ph -> O e. P ) |
| 12 |
|
mideulem.4 |
|- ( ph -> T e. P ) |
| 13 |
|
mideulem.5 |
|- ( ph -> ( A L B ) ( perpG ` G ) ( Q L B ) ) |
| 14 |
|
mideulem.6 |
|- ( ph -> ( A L B ) ( perpG ` G ) ( A L O ) ) |
| 15 |
|
mideulem.7 |
|- ( ph -> T e. ( A L B ) ) |
| 16 |
|
mideulem.8 |
|- ( ph -> T e. ( Q I O ) ) |
| 17 |
|
mideulem.9 |
|- ( ph -> ( A .- O ) ( leG ` G ) ( B .- Q ) ) |
| 18 |
|
simprrl |
|- ( ( ( ( ph /\ r e. P ) /\ ( r e. ( B I Q ) /\ ( A .- O ) = ( B .- r ) ) ) /\ ( x e. P /\ ( B = ( ( S ` x ) ` A ) /\ O = ( ( S ` x ) ` r ) ) ) ) -> B = ( ( S ` x ) ` A ) ) |
| 19 |
5
|
ad2antrr |
|- ( ( ( ph /\ r e. P ) /\ ( r e. ( B I Q ) /\ ( A .- O ) = ( B .- r ) ) ) -> G e. TarskiG ) |
| 20 |
7
|
ad2antrr |
|- ( ( ( ph /\ r e. P ) /\ ( r e. ( B I Q ) /\ ( A .- O ) = ( B .- r ) ) ) -> A e. P ) |
| 21 |
8
|
ad2antrr |
|- ( ( ( ph /\ r e. P ) /\ ( r e. ( B I Q ) /\ ( A .- O ) = ( B .- r ) ) ) -> B e. P ) |
| 22 |
9
|
ad2antrr |
|- ( ( ( ph /\ r e. P ) /\ ( r e. ( B I Q ) /\ ( A .- O ) = ( B .- r ) ) ) -> A =/= B ) |
| 23 |
10
|
ad2antrr |
|- ( ( ( ph /\ r e. P ) /\ ( r e. ( B I Q ) /\ ( A .- O ) = ( B .- r ) ) ) -> Q e. P ) |
| 24 |
11
|
ad2antrr |
|- ( ( ( ph /\ r e. P ) /\ ( r e. ( B I Q ) /\ ( A .- O ) = ( B .- r ) ) ) -> O e. P ) |
| 25 |
12
|
ad2antrr |
|- ( ( ( ph /\ r e. P ) /\ ( r e. ( B I Q ) /\ ( A .- O ) = ( B .- r ) ) ) -> T e. P ) |
| 26 |
13
|
ad2antrr |
|- ( ( ( ph /\ r e. P ) /\ ( r e. ( B I Q ) /\ ( A .- O ) = ( B .- r ) ) ) -> ( A L B ) ( perpG ` G ) ( Q L B ) ) |
| 27 |
14
|
ad2antrr |
|- ( ( ( ph /\ r e. P ) /\ ( r e. ( B I Q ) /\ ( A .- O ) = ( B .- r ) ) ) -> ( A L B ) ( perpG ` G ) ( A L O ) ) |
| 28 |
15
|
ad2antrr |
|- ( ( ( ph /\ r e. P ) /\ ( r e. ( B I Q ) /\ ( A .- O ) = ( B .- r ) ) ) -> T e. ( A L B ) ) |
| 29 |
16
|
ad2antrr |
|- ( ( ( ph /\ r e. P ) /\ ( r e. ( B I Q ) /\ ( A .- O ) = ( B .- r ) ) ) -> T e. ( Q I O ) ) |
| 30 |
|
simplr |
|- ( ( ( ph /\ r e. P ) /\ ( r e. ( B I Q ) /\ ( A .- O ) = ( B .- r ) ) ) -> r e. P ) |
| 31 |
|
simprl |
|- ( ( ( ph /\ r e. P ) /\ ( r e. ( B I Q ) /\ ( A .- O ) = ( B .- r ) ) ) -> r e. ( B I Q ) ) |
| 32 |
|
simprr |
|- ( ( ( ph /\ r e. P ) /\ ( r e. ( B I Q ) /\ ( A .- O ) = ( B .- r ) ) ) -> ( A .- O ) = ( B .- r ) ) |
| 33 |
1 2 3 4 19 6 20 21 22 23 24 25 26 27 28 29 30 31 32
|
opphllem |
|- ( ( ( ph /\ r e. P ) /\ ( r e. ( B I Q ) /\ ( A .- O ) = ( B .- r ) ) ) -> E. x e. P ( B = ( ( S ` x ) ` A ) /\ O = ( ( S ` x ) ` r ) ) ) |
| 34 |
18 33
|
reximddv |
|- ( ( ( ph /\ r e. P ) /\ ( r e. ( B I Q ) /\ ( A .- O ) = ( B .- r ) ) ) -> E. x e. P B = ( ( S ` x ) ` A ) ) |
| 35 |
|
eqid |
|- ( leG ` G ) = ( leG ` G ) |
| 36 |
1 2 3 35 5 7 11 8 10
|
legov |
|- ( ph -> ( ( A .- O ) ( leG ` G ) ( B .- Q ) <-> E. r e. P ( r e. ( B I Q ) /\ ( A .- O ) = ( B .- r ) ) ) ) |
| 37 |
17 36
|
mpbid |
|- ( ph -> E. r e. P ( r e. ( B I Q ) /\ ( A .- O ) = ( B .- r ) ) ) |
| 38 |
34 37
|
r19.29a |
|- ( ph -> E. x e. P B = ( ( S ` x ) ` A ) ) |