Metamath Proof Explorer


Theorem tglineeltr

Description: Transitivity law for lines, one half of tglineelsb2 . (Contributed by Thierry Arnoux, 25-May-2019)

Ref Expression
Hypotheses tglineelsb2.p B = Base G
tglineelsb2.i I = Itv G
tglineelsb2.l L = Line 𝒢 G
tglineelsb2.g φ G 𝒢 Tarski
tglineelsb2.1 φ P B
tglineelsb2.2 φ Q B
tglineelsb2.4 φ P Q
tglineelsb2.3 φ S B
tglineelsb2.5 φ S P
tglineelsb2.6 φ S P L Q
tglineeltr.7 φ R B
tglineeltr.8 φ R P L S
Assertion tglineeltr φ R P L Q

Proof

Step Hyp Ref Expression
1 tglineelsb2.p B = Base G
2 tglineelsb2.i I = Itv G
3 tglineelsb2.l L = Line 𝒢 G
4 tglineelsb2.g φ G 𝒢 Tarski
5 tglineelsb2.1 φ P B
6 tglineelsb2.2 φ Q B
7 tglineelsb2.4 φ P Q
8 tglineelsb2.3 φ S B
9 tglineelsb2.5 φ S P
10 tglineelsb2.6 φ S P L Q
11 tglineeltr.7 φ R B
12 tglineeltr.8 φ R P L S
13 4 ad3antrrr φ R B R P I S S P I Q G 𝒢 Tarski
14 5 ad3antrrr φ R B R P I S S P I Q P B
15 6 ad3antrrr φ R B R P I S S P I Q Q B
16 simpllr φ R B R P I S S P I Q R B
17 eqid dist G = dist G
18 8 ad3antrrr φ R B R P I S S P I Q S B
19 simplr φ R B R P I S S P I Q R P I S
20 simpr φ R B R P I S S P I Q S P I Q
21 1 17 2 13 14 16 18 15 19 20 tgbtwnexch φ R B R P I S S P I Q R P I Q
22 1 3 2 13 14 15 16 21 btwncolg1 φ R B R P I S S P I Q R P L Q P = Q
23 4 ad3antrrr φ R B R P I S P S I Q G 𝒢 Tarski
24 5 ad3antrrr φ R B R P I S P S I Q P B
25 6 ad3antrrr φ R B R P I S P S I Q Q B
26 simpllr φ R B R P I S P S I Q R B
27 8 ad3antrrr φ R B R P I S P S I Q S B
28 simplr φ R B R P I S P S I Q R P I S
29 1 17 2 23 24 26 27 28 tgbtwncom φ R B R P I S P S I Q R S I P
30 simpr φ R B R P I S P S I Q P S I Q
31 1 17 2 23 27 26 24 25 29 30 tgbtwnexch3 φ R B R P I S P S I Q P R I Q
32 1 3 2 23 24 25 26 31 btwncolg2 φ R B R P I S P S I Q R P L Q P = Q
33 4 ad3antrrr φ R B R P I S Q P I S G 𝒢 Tarski
34 5 ad3antrrr φ R B R P I S Q P I S P B
35 simpllr φ R B R P I S Q P I S R B
36 6 ad3antrrr φ R B R P I S Q P I S Q B
37 8 ad3antrrr φ R B R P I S Q P I S S B
38 simplr φ R B R P I S Q P I S R P I S
39 simpr φ R B R P I S Q P I S Q P I S
40 1 2 33 34 35 36 37 38 39 3 tgbtwnconnln3 φ R B R P I S Q P I S R P L Q P = Q
41 1 3 2 4 5 6 7 8 tgellng φ S P L Q S P I Q P S I Q Q P I S
42 10 41 mpbid φ S P I Q P S I Q Q P I S
43 42 ad2antrr φ R B R P I S S P I Q P S I Q Q P I S
44 22 32 40 43 mpjao3dan φ R B R P I S R P L Q P = Q
45 44 an32s φ R P I S R B R P L Q P = Q
46 11 45 mpidan φ R P I S R P L Q P = Q
47 4 ad3antrrr φ R B P R I S S P I Q G 𝒢 Tarski
48 5 ad3antrrr φ R B P R I S S P I Q P B
49 6 ad3antrrr φ R B P R I S S P I Q Q B
50 simpllr φ R B P R I S S P I Q R B
51 8 ad3antrrr φ R B P R I S S P I Q S B
52 9 necomd φ P S
53 52 ad3antrrr φ R B P R I S S P I Q P S
54 simplr φ R B P R I S S P I Q P R I S
55 simpr φ R B P R I S S P I Q S P I Q
56 1 17 2 47 50 48 51 49 53 54 55 tgbtwnouttr φ R B P R I S S P I Q P R I Q
57 1 3 2 47 48 49 50 56 btwncolg2 φ R B P R I S S P I Q R P L Q P = Q
58 4 ad3antrrr φ R B P R I S P S I Q G 𝒢 Tarski
59 6 ad3antrrr φ R B P R I S P S I Q Q B
60 simpllr φ R B P R I S P S I Q R B
61 5 ad3antrrr φ R B P R I S P S I Q P B
62 8 ad3antrrr φ R B P R I S P S I Q S B
63 9 ad3antrrr φ R B P R I S P S I Q S P
64 simpr φ R B P R I S P S I Q P S I Q
65 simplr φ R B P R I S P S I Q P R I S
66 1 17 2 58 60 61 62 65 tgbtwncom φ R B P R I S P S I Q P S I R
67 1 2 58 62 61 59 60 3 63 64 66 tgbtwnconnln2 φ R B P R I S P S I Q P Q L R Q = R
68 1 3 2 58 59 60 61 67 colrot2 φ R B P R I S P S I Q R P L Q P = Q
69 4 ad3antrrr φ R B P R I S Q P I S G 𝒢 Tarski
70 6 ad3antrrr φ R B P R I S Q P I S Q B
71 5 ad3antrrr φ R B P R I S Q P I S P B
72 simpllr φ R B P R I S Q P I S R B
73 8 ad3antrrr φ R B P R I S Q P I S S B
74 simpr φ R B P R I S Q P I S Q P I S
75 simplr φ R B P R I S Q P I S P R I S
76 1 17 2 69 70 71 72 73 74 75 tgbtwnintr φ R B P R I S Q P I S P Q I R
77 1 3 2 69 70 71 72 76 btwncolg3 φ R B P R I S Q P I S R Q L P Q = P
78 1 3 2 69 70 71 72 77 colcom φ R B P R I S Q P I S R P L Q P = Q
79 42 ad2antrr φ R B P R I S S P I Q P S I Q Q P I S
80 57 68 78 79 mpjao3dan φ R B P R I S R P L Q P = Q
81 80 an32s φ P R I S R B R P L Q P = Q
82 11 81 mpidan φ P R I S R P L Q P = Q
83 4 ad3antrrr φ R B S P I R S P I Q G 𝒢 Tarski
84 6 ad3antrrr φ R B S P I R S P I Q Q B
85 simpllr φ R B S P I R S P I Q R B
86 5 ad3antrrr φ R B S P I R S P I Q P B
87 8 ad3antrrr φ R B S P I R S P I Q S B
88 52 ad3antrrr φ R B S P I R S P I Q P S
89 simpr φ R B S P I R S P I Q S P I Q
90 simplr φ R B S P I R S P I Q S P I R
91 1 2 83 86 87 84 85 3 88 89 90 tgbtwnconnln1 φ R B S P I R S P I Q P Q L R Q = R
92 1 3 2 83 84 85 86 91 colrot2 φ R B S P I R S P I Q R P L Q P = Q
93 4 ad3antrrr φ R B S P I R P S I Q G 𝒢 Tarski
94 5 ad3antrrr φ R B S P I R P S I Q P B
95 6 ad3antrrr φ R B S P I R P S I Q Q B
96 simpllr φ R B S P I R P S I Q R B
97 8 ad3antrrr φ R B S P I R P S I Q S B
98 9 ad3antrrr φ R B S P I R P S I Q S P
99 simplr φ R B S P I R P S I Q S P I R
100 1 17 2 93 94 97 96 99 tgbtwncom φ R B S P I R P S I Q S R I P
101 simpr φ R B S P I R P S I Q P S I Q
102 1 17 2 93 96 97 94 95 98 100 101 tgbtwnouttr2 φ R B S P I R P S I Q P R I Q
103 1 3 2 93 94 95 96 102 btwncolg2 φ R B S P I R P S I Q R P L Q P = Q
104 4 ad3antrrr φ R B S P I R Q P I S G 𝒢 Tarski
105 5 ad3antrrr φ R B S P I R Q P I S P B
106 6 ad3antrrr φ R B S P I R Q P I S Q B
107 simpllr φ R B S P I R Q P I S R B
108 8 ad3antrrr φ R B S P I R Q P I S S B
109 simpr φ R B S P I R Q P I S Q P I S
110 simplr φ R B S P I R Q P I S S P I R
111 1 17 2 104 105 106 108 107 109 110 tgbtwnexch φ R B S P I R Q P I S Q P I R
112 1 3 2 104 105 106 107 111 btwncolg3 φ R B S P I R Q P I S R P L Q P = Q
113 42 ad2antrr φ R B S P I R S P I Q P S I Q Q P I S
114 92 103 112 113 mpjao3dan φ R B S P I R R P L Q P = Q
115 114 an32s φ S P I R R B R P L Q P = Q
116 11 115 mpidan φ S P I R R P L Q P = Q
117 id φ φ
118 4 adantr φ R B G 𝒢 Tarski
119 5 adantr φ R B P B
120 8 adantr φ R B S B
121 52 adantr φ R B P S
122 simpr φ R B R B
123 1 3 2 118 119 120 121 122 tgellng φ R B R P L S R P I S P R I S S P I R
124 123 biimpa φ R B R P L S R P I S P R I S S P I R
125 117 11 12 124 syl21anc φ R P I S P R I S S P I R
126 46 82 116 125 mpjao3dan φ R P L Q P = Q
127 7 neneqd φ ¬ P = Q
128 pm5.61 R P L Q P = Q ¬ P = Q R P L Q ¬ P = Q
129 128 simplbi R P L Q P = Q ¬ P = Q R P L Q
130 126 127 129 syl2anc φ R P L Q