Metamath Proof Explorer


Theorem tgbtwnconnln2

Description: Derive colinearity from betweenness. (Contributed by Thierry Arnoux, 17-May-2019)

Ref Expression
Hypotheses tgbtwnconn.p P = Base G
tgbtwnconn.i I = Itv G
tgbtwnconn.g φ G 𝒢 Tarski
tgbtwnconn.a φ A P
tgbtwnconn.b φ B P
tgbtwnconn.c φ C P
tgbtwnconn.d φ D P
tgbtwnconnln1.l L = Line 𝒢 G
tgbtwnconnln1.1 φ A B
tgbtwnconnln1.2 φ B A I C
tgbtwnconnln1.3 φ B A I D
Assertion tgbtwnconnln2 φ B C L D C = D

Proof

Step Hyp Ref Expression
1 tgbtwnconn.p P = Base G
2 tgbtwnconn.i I = Itv G
3 tgbtwnconn.g φ G 𝒢 Tarski
4 tgbtwnconn.a φ A P
5 tgbtwnconn.b φ B P
6 tgbtwnconn.c φ C P
7 tgbtwnconn.d φ D P
8 tgbtwnconnln1.l L = Line 𝒢 G
9 tgbtwnconnln1.1 φ A B
10 tgbtwnconnln1.2 φ B A I C
11 tgbtwnconnln1.3 φ B A I D
12 3 adantr φ C B I D G 𝒢 Tarski
13 6 adantr φ C B I D C P
14 7 adantr φ C B I D D P
15 5 adantr φ C B I D B P
16 simpr φ C B I D C B I D
17 1 8 2 12 13 14 15 16 btwncolg2 φ C B I D B C L D C = D
18 3 adantr φ D B I C G 𝒢 Tarski
19 6 adantr φ D B I C C P
20 7 adantr φ D B I C D P
21 5 adantr φ D B I C B P
22 eqid dist G = dist G
23 simpr φ D B I C D B I C
24 1 22 2 18 21 20 19 23 tgbtwncom φ D B I C D C I B
25 1 8 2 18 19 20 21 24 btwncolg3 φ D B I C B C L D C = D
26 1 2 3 4 5 6 7 9 10 11 tgbtwnconn2 φ C B I D D B I C
27 17 25 26 mpjaodan φ B C L D C = D