Metamath Proof Explorer


Theorem colcom

Description: Swapping the points defining a line keeps it unchanged. Part of Theorem 4.11 of Schwabhauser p. 34. (Contributed by Thierry Arnoux, 3-Apr-2019)

Ref Expression
Hypotheses tglngval.p P=BaseG
tglngval.l L=Line𝒢G
tglngval.i I=ItvG
tglngval.g φG𝒢Tarski
tglngval.x φXP
tglngval.y φYP
tgcolg.z φZP
colrot φZXLYX=Y
Assertion colcom φZYLXY=X

Proof

Step Hyp Ref Expression
1 tglngval.p P=BaseG
2 tglngval.l L=Line𝒢G
3 tglngval.i I=ItvG
4 tglngval.g φG𝒢Tarski
5 tglngval.x φXP
6 tglngval.y φYP
7 tgcolg.z φZP
8 colrot φZXLYX=Y
9 3orcomb ZXIYXZIYYXIZZXIYYXIZXZIY
10 eqid distG=distG
11 1 10 3 4 5 7 6 tgbtwncomb φZXIYZYIX
12 1 10 3 4 5 6 7 tgbtwncomb φYXIZYZIX
13 1 10 3 4 7 5 6 tgbtwncomb φXZIYXYIZ
14 11 12 13 3orbi123d φZXIYYXIZXZIYZYIXYZIXXYIZ
15 9 14 bitrid φZXIYXZIYYXIZZYIXYZIXXYIZ
16 1 2 3 4 5 6 7 tgcolg φZXLYX=YZXIYXZIYYXIZ
17 1 2 3 4 6 5 7 tgcolg φZYLXY=XZYIXYZIXXYIZ
18 15 16 17 3bitr4d φZXLYX=YZYLXY=X
19 8 18 mpbid φZYLXY=X