Metamath Proof Explorer


Theorem opphllem1

Description: Lemma for opphl . (Contributed by Thierry Arnoux, 20-Dec-2019)

Ref Expression
Hypotheses hpg.p P=BaseG
hpg.d -˙=distG
hpg.i I=ItvG
hpg.o O=ab|aPDbPDtDtaIb
opphl.l L=Line𝒢G
opphl.d φDranL
opphl.g φG𝒢Tarski
opphllem1.s S=pInv𝒢GM
opphllem1.a φAP
opphllem1.b φBP
opphllem1.c φCP
opphllem1.r φRD
opphllem1.o φAOC
opphllem1.m φMD
opphllem1.n φA=SC
opphllem1.x φAR
opphllem1.y φBR
opphllem1.z φBRIA
Assertion opphllem1 φBOC

Proof

Step Hyp Ref Expression
1 hpg.p P=BaseG
2 hpg.d -˙=distG
3 hpg.i I=ItvG
4 hpg.o O=ab|aPDbPDtDtaIb
5 opphl.l L=Line𝒢G
6 opphl.d φDranL
7 opphl.g φG𝒢Tarski
8 opphllem1.s S=pInv𝒢GM
9 opphllem1.a φAP
10 opphllem1.b φBP
11 opphllem1.c φCP
12 opphllem1.r φRD
13 opphllem1.o φAOC
14 opphllem1.m φMD
15 opphllem1.n φA=SC
16 opphllem1.x φAR
17 opphllem1.y φBR
18 opphllem1.z φBRIA
19 1 2 3 4 5 6 7 9 11 13 oppne1 φ¬AD
20 simpr φBDA=BA=B
21 simplr φBDA=BBD
22 20 21 eqeltrd φBDA=BAD
23 7 ad2antrr φBDABG𝒢Tarski
24 10 ad2antrr φBDABBP
25 1 5 3 7 6 12 tglnpt φRP
26 25 ad2antrr φBDABRP
27 9 ad2antrr φBDABAP
28 17 ad2antrr φBDABBR
29 28 necomd φBDABRB
30 18 ad2antrr φBDABBRIA
31 1 3 5 23 26 24 27 29 30 btwnlng3 φBDABARLB
32 1 3 5 23 24 26 27 28 31 lncom φBDABABLR
33 6 ad2antrr φBDABDranL
34 simplr φBDABBD
35 12 ad2antrr φBDABRD
36 1 3 5 23 24 26 28 28 33 34 35 tglinethru φBDABD=BLR
37 32 36 eleqtrrd φBDABAD
38 22 37 pm2.61dane φBDAD
39 19 38 mtand φ¬BD
40 1 2 3 4 5 6 7 9 11 13 oppne2 φ¬CD
41 1 5 3 7 6 14 tglnpt φMP
42 eqid pInv𝒢G=pInv𝒢G
43 1 2 3 5 42 7 41 8 9 mirbtwn φMSAIA
44 15 eqcomd φSC=A
45 1 2 3 5 42 7 41 8 11 44 mircom φSA=C
46 45 oveq1d φSAIA=CIA
47 43 46 eleqtrd φMCIA
48 1 2 3 7 25 11 9 10 41 18 47 axtgpasch φtPtBICtMIR
49 7 ad2antrr φtPtBICtMIRM=RG𝒢Tarski
50 25 ad2antrr φtPtBICtMIRM=RRP
51 simplrl φtPtBICtMIRM=RtP
52 simplrr φtPtBICtMIRM=RtBICtMIR
53 52 simprd φtPtBICtMIRM=RtMIR
54 simpr φtPtBICtMIRM=RM=R
55 54 oveq1d φtPtBICtMIRM=RMIR=RIR
56 53 55 eleqtrd φtPtBICtMIRM=RtRIR
57 1 2 3 49 50 51 56 axtgbtwnid φtPtBICtMIRM=RR=t
58 12 ad2antrr φtPtBICtMIRM=RRD
59 57 58 eqeltrrd φtPtBICtMIRM=RtD
60 7 ad2antrr φtPtBICtMIRMRG𝒢Tarski
61 41 ad2antrr φtPtBICtMIRMRMP
62 25 ad2antrr φtPtBICtMIRMRRP
63 simplrl φtPtBICtMIRMRtP
64 simpr φtPtBICtMIRMRMR
65 simplrr φtPtBICtMIRMRtBICtMIR
66 65 simprd φtPtBICtMIRMRtMIR
67 1 3 5 60 61 62 63 64 66 btwnlng1 φtPtBICtMIRMRtMLR
68 7 adantr φMRG𝒢Tarski
69 41 adantr φMRMP
70 25 adantr φMRRP
71 simpr φMRMR
72 6 adantr φMRDranL
73 14 adantr φMRMD
74 12 adantr φMRRD
75 1 3 5 68 69 70 71 71 72 73 74 tglinethru φMRD=MLR
76 75 adantlr φtPtBICtMIRMRD=MLR
77 67 76 eleqtrrd φtPtBICtMIRMRtD
78 59 77 pm2.61dane φtPtBICtMIRtD
79 simprrl φtPtBICtMIRtBIC
80 48 78 79 reximssdv φtDtBIC
81 39 40 80 jca31 φ¬BD¬CDtDtBIC
82 1 2 3 4 10 11 islnopp φBOC¬BD¬CDtDtBIC
83 81 82 mpbird φBOC