Description: The norm of a Hilbert-space-valued state equals zero iff the state value equals zero. (Contributed by NM, 30-Jun-2006) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | hst0h | |- ( ( S e. CHStates /\ A e. CH ) -> ( ( normh ` ( S ` A ) ) = 0 <-> ( S ` A ) = 0h ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hstcl | |- ( ( S e. CHStates /\ A e. CH ) -> ( S ` A ) e. ~H ) |
|
2 | norm-i | |- ( ( S ` A ) e. ~H -> ( ( normh ` ( S ` A ) ) = 0 <-> ( S ` A ) = 0h ) ) |
|
3 | 1 2 | syl | |- ( ( S e. CHStates /\ A e. CH ) -> ( ( normh ` ( S ` A ) ) = 0 <-> ( S ` A ) = 0h ) ) |