Metamath Proof Explorer


Theorem hst0h

Description: The norm of a Hilbert-space-valued state equals zero iff the state value equals zero. (Contributed by NM, 30-Jun-2006) (New usage is discouraged.)

Ref Expression
Assertion hst0h
|- ( ( S e. CHStates /\ A e. CH ) -> ( ( normh ` ( S ` A ) ) = 0 <-> ( S ` A ) = 0h ) )

Proof

Step Hyp Ref Expression
1 hstcl
 |-  ( ( S e. CHStates /\ A e. CH ) -> ( S ` A ) e. ~H )
2 norm-i
 |-  ( ( S ` A ) e. ~H -> ( ( normh ` ( S ` A ) ) = 0 <-> ( S ` A ) = 0h ) )
3 1 2 syl
 |-  ( ( S e. CHStates /\ A e. CH ) -> ( ( normh ` ( S ` A ) ) = 0 <-> ( S ` A ) = 0h ) )