| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hstosum |
|- ( ( ( S e. CHStates /\ A e. CH ) /\ ( B e. CH /\ A C_ ( _|_ ` B ) ) ) -> ( S ` ( A vH B ) ) = ( ( S ` A ) +h ( S ` B ) ) ) |
| 2 |
1
|
fveq2d |
|- ( ( ( S e. CHStates /\ A e. CH ) /\ ( B e. CH /\ A C_ ( _|_ ` B ) ) ) -> ( normh ` ( S ` ( A vH B ) ) ) = ( normh ` ( ( S ` A ) +h ( S ` B ) ) ) ) |
| 3 |
2
|
oveq1d |
|- ( ( ( S e. CHStates /\ A e. CH ) /\ ( B e. CH /\ A C_ ( _|_ ` B ) ) ) -> ( ( normh ` ( S ` ( A vH B ) ) ) ^ 2 ) = ( ( normh ` ( ( S ` A ) +h ( S ` B ) ) ) ^ 2 ) ) |
| 4 |
|
hstcl |
|- ( ( S e. CHStates /\ A e. CH ) -> ( S ` A ) e. ~H ) |
| 5 |
4
|
adantr |
|- ( ( ( S e. CHStates /\ A e. CH ) /\ ( B e. CH /\ A C_ ( _|_ ` B ) ) ) -> ( S ` A ) e. ~H ) |
| 6 |
|
hstcl |
|- ( ( S e. CHStates /\ B e. CH ) -> ( S ` B ) e. ~H ) |
| 7 |
6
|
ad2ant2r |
|- ( ( ( S e. CHStates /\ A e. CH ) /\ ( B e. CH /\ A C_ ( _|_ ` B ) ) ) -> ( S ` B ) e. ~H ) |
| 8 |
|
hstorth |
|- ( ( ( S e. CHStates /\ A e. CH ) /\ ( B e. CH /\ A C_ ( _|_ ` B ) ) ) -> ( ( S ` A ) .ih ( S ` B ) ) = 0 ) |
| 9 |
|
normpyth |
|- ( ( ( S ` A ) e. ~H /\ ( S ` B ) e. ~H ) -> ( ( ( S ` A ) .ih ( S ` B ) ) = 0 -> ( ( normh ` ( ( S ` A ) +h ( S ` B ) ) ) ^ 2 ) = ( ( ( normh ` ( S ` A ) ) ^ 2 ) + ( ( normh ` ( S ` B ) ) ^ 2 ) ) ) ) |
| 10 |
9
|
3impia |
|- ( ( ( S ` A ) e. ~H /\ ( S ` B ) e. ~H /\ ( ( S ` A ) .ih ( S ` B ) ) = 0 ) -> ( ( normh ` ( ( S ` A ) +h ( S ` B ) ) ) ^ 2 ) = ( ( ( normh ` ( S ` A ) ) ^ 2 ) + ( ( normh ` ( S ` B ) ) ^ 2 ) ) ) |
| 11 |
5 7 8 10
|
syl3anc |
|- ( ( ( S e. CHStates /\ A e. CH ) /\ ( B e. CH /\ A C_ ( _|_ ` B ) ) ) -> ( ( normh ` ( ( S ` A ) +h ( S ` B ) ) ) ^ 2 ) = ( ( ( normh ` ( S ` A ) ) ^ 2 ) + ( ( normh ` ( S ` B ) ) ^ 2 ) ) ) |
| 12 |
3 11
|
eqtrd |
|- ( ( ( S e. CHStates /\ A e. CH ) /\ ( B e. CH /\ A C_ ( _|_ ` B ) ) ) -> ( ( normh ` ( S ` ( A vH B ) ) ) ^ 2 ) = ( ( ( normh ` ( S ` A ) ) ^ 2 ) + ( ( normh ` ( S ` B ) ) ^ 2 ) ) ) |