Description: The norm of a Hilbert-space-valued state equals zero iff the state value equals zero. (Contributed by NM, 30-Jun-2006) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | hst0h | ⊢ ( ( 𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) = 0 ↔ ( 𝑆 ‘ 𝐴 ) = 0ℎ ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hstcl | ⊢ ( ( 𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → ( 𝑆 ‘ 𝐴 ) ∈ ℋ ) | |
2 | norm-i | ⊢ ( ( 𝑆 ‘ 𝐴 ) ∈ ℋ → ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) = 0 ↔ ( 𝑆 ‘ 𝐴 ) = 0ℎ ) ) | |
3 | 1 2 | syl | ⊢ ( ( 𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → ( ( normℎ ‘ ( 𝑆 ‘ 𝐴 ) ) = 0 ↔ ( 𝑆 ‘ 𝐴 ) = 0ℎ ) ) |