| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hvaddsubval |
|- ( ( A e. ~H /\ B e. ~H ) -> ( A +h B ) = ( A -h ( -u 1 .h B ) ) ) |
| 2 |
1
|
eqeq1d |
|- ( ( A e. ~H /\ B e. ~H ) -> ( ( A +h B ) = 0h <-> ( A -h ( -u 1 .h B ) ) = 0h ) ) |
| 3 |
|
neg1cn |
|- -u 1 e. CC |
| 4 |
|
hvmulcl |
|- ( ( -u 1 e. CC /\ B e. ~H ) -> ( -u 1 .h B ) e. ~H ) |
| 5 |
3 4
|
mpan |
|- ( B e. ~H -> ( -u 1 .h B ) e. ~H ) |
| 6 |
|
hvsubeq0 |
|- ( ( A e. ~H /\ ( -u 1 .h B ) e. ~H ) -> ( ( A -h ( -u 1 .h B ) ) = 0h <-> A = ( -u 1 .h B ) ) ) |
| 7 |
5 6
|
sylan2 |
|- ( ( A e. ~H /\ B e. ~H ) -> ( ( A -h ( -u 1 .h B ) ) = 0h <-> A = ( -u 1 .h B ) ) ) |
| 8 |
2 7
|
bitrd |
|- ( ( A e. ~H /\ B e. ~H ) -> ( ( A +h B ) = 0h <-> A = ( -u 1 .h B ) ) ) |