| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oveq1 |
|- ( A = if ( A e. ~H , A , 0h ) -> ( A -h B ) = ( if ( A e. ~H , A , 0h ) -h B ) ) |
| 2 |
1
|
eqeq1d |
|- ( A = if ( A e. ~H , A , 0h ) -> ( ( A -h B ) = 0h <-> ( if ( A e. ~H , A , 0h ) -h B ) = 0h ) ) |
| 3 |
|
eqeq1 |
|- ( A = if ( A e. ~H , A , 0h ) -> ( A = B <-> if ( A e. ~H , A , 0h ) = B ) ) |
| 4 |
2 3
|
bibi12d |
|- ( A = if ( A e. ~H , A , 0h ) -> ( ( ( A -h B ) = 0h <-> A = B ) <-> ( ( if ( A e. ~H , A , 0h ) -h B ) = 0h <-> if ( A e. ~H , A , 0h ) = B ) ) ) |
| 5 |
|
oveq2 |
|- ( B = if ( B e. ~H , B , 0h ) -> ( if ( A e. ~H , A , 0h ) -h B ) = ( if ( A e. ~H , A , 0h ) -h if ( B e. ~H , B , 0h ) ) ) |
| 6 |
5
|
eqeq1d |
|- ( B = if ( B e. ~H , B , 0h ) -> ( ( if ( A e. ~H , A , 0h ) -h B ) = 0h <-> ( if ( A e. ~H , A , 0h ) -h if ( B e. ~H , B , 0h ) ) = 0h ) ) |
| 7 |
|
eqeq2 |
|- ( B = if ( B e. ~H , B , 0h ) -> ( if ( A e. ~H , A , 0h ) = B <-> if ( A e. ~H , A , 0h ) = if ( B e. ~H , B , 0h ) ) ) |
| 8 |
6 7
|
bibi12d |
|- ( B = if ( B e. ~H , B , 0h ) -> ( ( ( if ( A e. ~H , A , 0h ) -h B ) = 0h <-> if ( A e. ~H , A , 0h ) = B ) <-> ( ( if ( A e. ~H , A , 0h ) -h if ( B e. ~H , B , 0h ) ) = 0h <-> if ( A e. ~H , A , 0h ) = if ( B e. ~H , B , 0h ) ) ) ) |
| 9 |
|
ifhvhv0 |
|- if ( A e. ~H , A , 0h ) e. ~H |
| 10 |
|
ifhvhv0 |
|- if ( B e. ~H , B , 0h ) e. ~H |
| 11 |
9 10
|
hvsubeq0i |
|- ( ( if ( A e. ~H , A , 0h ) -h if ( B e. ~H , B , 0h ) ) = 0h <-> if ( A e. ~H , A , 0h ) = if ( B e. ~H , B , 0h ) ) |
| 12 |
4 8 11
|
dedth2h |
|- ( ( A e. ~H /\ B e. ~H ) -> ( ( A -h B ) = 0h <-> A = B ) ) |