| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hvnegdi.1 |
|- A e. ~H |
| 2 |
|
hvnegdi.2 |
|- B e. ~H |
| 3 |
1 2
|
hvsubvali |
|- ( A -h B ) = ( A +h ( -u 1 .h B ) ) |
| 4 |
3
|
eqeq1i |
|- ( ( A -h B ) = 0h <-> ( A +h ( -u 1 .h B ) ) = 0h ) |
| 5 |
|
oveq1 |
|- ( ( A +h ( -u 1 .h B ) ) = 0h -> ( ( A +h ( -u 1 .h B ) ) +h B ) = ( 0h +h B ) ) |
| 6 |
4 5
|
sylbi |
|- ( ( A -h B ) = 0h -> ( ( A +h ( -u 1 .h B ) ) +h B ) = ( 0h +h B ) ) |
| 7 |
|
neg1cn |
|- -u 1 e. CC |
| 8 |
7 2
|
hvmulcli |
|- ( -u 1 .h B ) e. ~H |
| 9 |
1 8 2
|
hvadd32i |
|- ( ( A +h ( -u 1 .h B ) ) +h B ) = ( ( A +h B ) +h ( -u 1 .h B ) ) |
| 10 |
1 2 8
|
hvassi |
|- ( ( A +h B ) +h ( -u 1 .h B ) ) = ( A +h ( B +h ( -u 1 .h B ) ) ) |
| 11 |
2
|
hvnegidi |
|- ( B +h ( -u 1 .h B ) ) = 0h |
| 12 |
11
|
oveq2i |
|- ( A +h ( B +h ( -u 1 .h B ) ) ) = ( A +h 0h ) |
| 13 |
|
ax-hvaddid |
|- ( A e. ~H -> ( A +h 0h ) = A ) |
| 14 |
1 13
|
ax-mp |
|- ( A +h 0h ) = A |
| 15 |
12 14
|
eqtri |
|- ( A +h ( B +h ( -u 1 .h B ) ) ) = A |
| 16 |
10 15
|
eqtri |
|- ( ( A +h B ) +h ( -u 1 .h B ) ) = A |
| 17 |
9 16
|
eqtri |
|- ( ( A +h ( -u 1 .h B ) ) +h B ) = A |
| 18 |
2
|
hvaddlidi |
|- ( 0h +h B ) = B |
| 19 |
6 17 18
|
3eqtr3g |
|- ( ( A -h B ) = 0h -> A = B ) |
| 20 |
|
oveq1 |
|- ( A = B -> ( A -h B ) = ( B -h B ) ) |
| 21 |
|
hvsubid |
|- ( B e. ~H -> ( B -h B ) = 0h ) |
| 22 |
2 21
|
ax-mp |
|- ( B -h B ) = 0h |
| 23 |
20 22
|
eqtrdi |
|- ( A = B -> ( A -h B ) = 0h ) |
| 24 |
19 23
|
impbii |
|- ( ( A -h B ) = 0h <-> A = B ) |