Metamath Proof Explorer


Theorem iccdisj

Description: If the upper bound of one closed interval is less than the lower bound of the other, the intervals are disjoint. (Contributed by Zhi Wang, 9-Sep-2024)

Ref Expression
Assertion iccdisj
|- ( ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) ) /\ B < C ) -> ( ( A [,] B ) i^i ( C [,] D ) ) = (/) )

Proof

Step Hyp Ref Expression
1 simplll
 |-  ( ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) ) /\ B < C ) -> A e. RR* )
2 simplrr
 |-  ( ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) ) /\ B < C ) -> D e. RR* )
3 simpr
 |-  ( ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) ) /\ B < C ) -> B < C )
4 iccdisj2
 |-  ( ( A e. RR* /\ D e. RR* /\ B < C ) -> ( ( A [,] B ) i^i ( C [,] D ) ) = (/) )
5 1 2 3 4 syl3anc
 |-  ( ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) ) /\ B < C ) -> ( ( A [,] B ) i^i ( C [,] D ) ) = (/) )