Step |
Hyp |
Ref |
Expression |
1 |
|
simplll |
|- ( ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) ) /\ B < C ) -> A e. RR* ) |
2 |
|
simplrr |
|- ( ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) ) /\ B < C ) -> D e. RR* ) |
3 |
|
simpr |
|- ( ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) ) /\ B < C ) -> B < C ) |
4 |
|
iccdisj2 |
|- ( ( A e. RR* /\ D e. RR* /\ B < C ) -> ( ( A [,] B ) i^i ( C [,] D ) ) = (/) ) |
5 |
1 2 3 4
|
syl3anc |
|- ( ( ( ( A e. RR* /\ B e. RR* ) /\ ( C e. RR* /\ D e. RR* ) ) /\ B < C ) -> ( ( A [,] B ) i^i ( C [,] D ) ) = (/) ) |