Step |
Hyp |
Ref |
Expression |
1 |
|
iccconn |
|- ( ( A e. RR /\ B e. RR ) -> ( ( topGen ` ran (,) ) |`t ( A [,] B ) ) e. Conn ) |
2 |
|
iccssre |
|- ( ( A e. RR /\ B e. RR ) -> ( A [,] B ) C_ RR ) |
3 |
|
eqid |
|- ( ( topGen ` ran (,) ) |`t ( A [,] B ) ) = ( ( topGen ` ran (,) ) |`t ( A [,] B ) ) |
4 |
3
|
resconn |
|- ( ( A [,] B ) C_ RR -> ( ( ( topGen ` ran (,) ) |`t ( A [,] B ) ) e. SConn <-> ( ( topGen ` ran (,) ) |`t ( A [,] B ) ) e. Conn ) ) |
5 |
2 4
|
syl |
|- ( ( A e. RR /\ B e. RR ) -> ( ( ( topGen ` ran (,) ) |`t ( A [,] B ) ) e. SConn <-> ( ( topGen ` ran (,) ) |`t ( A [,] B ) ) e. Conn ) ) |
6 |
1 5
|
mpbird |
|- ( ( A e. RR /\ B e. RR ) -> ( ( topGen ` ran (,) ) |`t ( A [,] B ) ) e. SConn ) |