Metamath Proof Explorer


Theorem iccsconn

Description: A closed interval is simply connected. (Contributed by Mario Carneiro, 9-Mar-2015)

Ref Expression
Assertion iccsconn A B topGen ran . 𝑡 A B SConn

Proof

Step Hyp Ref Expression
1 iccconn A B topGen ran . 𝑡 A B Conn
2 iccssre A B A B
3 eqid topGen ran . 𝑡 A B = topGen ran . 𝑡 A B
4 3 resconn A B topGen ran . 𝑡 A B SConn topGen ran . 𝑡 A B Conn
5 2 4 syl A B topGen ran . 𝑡 A B SConn topGen ran . 𝑡 A B Conn
6 1 5 mpbird A B topGen ran . 𝑡 A B SConn