| Step |
Hyp |
Ref |
Expression |
| 1 |
|
resconn.1 |
|
| 2 |
|
sconnpconn |
|
| 3 |
|
pconnconn |
|
| 4 |
2 3
|
syl |
|
| 5 |
|
eqid |
|
| 6 |
|
eqid |
|
| 7 |
5 6
|
rerest |
|
| 8 |
7 1
|
eqtr4di |
|
| 9 |
8
|
adantr |
|
| 10 |
|
simpl |
|
| 11 |
|
ax-resscn |
|
| 12 |
10 11
|
sstrdi |
|
| 13 |
|
df-3an |
|
| 14 |
|
oveq2 |
|
| 15 |
|
oveq2 |
|
| 16 |
14 15
|
oveqan12d |
|
| 17 |
16
|
eleq1d |
|
| 18 |
17
|
ralbidv |
|
| 19 |
|
oveq2 |
|
| 20 |
|
oveq2 |
|
| 21 |
19 20
|
oveqan12d |
|
| 22 |
21
|
eleq1d |
|
| 23 |
22
|
ralbidv |
|
| 24 |
|
unitssre |
|
| 25 |
24 11
|
sstri |
|
| 26 |
|
simpr |
|
| 27 |
25 26
|
sselid |
|
| 28 |
12
|
adantr |
|
| 29 |
|
simpr2 |
|
| 30 |
28 29
|
sseldd |
|
| 31 |
30
|
adantr |
|
| 32 |
27 31
|
mulcld |
|
| 33 |
|
ax-1cn |
|
| 34 |
|
subcl |
|
| 35 |
33 27 34
|
sylancr |
|
| 36 |
|
simpr1 |
|
| 37 |
28 36
|
sseldd |
|
| 38 |
37
|
adantr |
|
| 39 |
35 38
|
mulcld |
|
| 40 |
32 39
|
addcomd |
|
| 41 |
|
nncan |
|
| 42 |
33 27 41
|
sylancr |
|
| 43 |
42
|
oveq1d |
|
| 44 |
43
|
oveq2d |
|
| 45 |
40 44
|
eqtr4d |
|
| 46 |
|
iirev |
|
| 47 |
46
|
adantl |
|
| 48 |
1
|
eleq1i |
|
| 49 |
|
reconn |
|
| 50 |
48 49
|
bitrid |
|
| 51 |
50
|
biimpa |
|
| 52 |
51
|
r19.21bi |
|
| 53 |
52
|
r19.21bi |
|
| 54 |
53
|
anasss |
|
| 55 |
54
|
3adantr3 |
|
| 56 |
55
|
adantr |
|
| 57 |
|
simpr |
|
| 58 |
24 57
|
sselid |
|
| 59 |
|
simplll |
|
| 60 |
36
|
adantr |
|
| 61 |
59 60
|
sseldd |
|
| 62 |
58 61
|
remulcld |
|
| 63 |
|
1re |
|
| 64 |
|
resubcl |
|
| 65 |
63 58 64
|
sylancr |
|
| 66 |
29
|
adantr |
|
| 67 |
59 66
|
sseldd |
|
| 68 |
65 67
|
remulcld |
|
| 69 |
62 68
|
readdcld |
|
| 70 |
58
|
recnd |
|
| 71 |
|
pncan3 |
|
| 72 |
70 33 71
|
sylancl |
|
| 73 |
72
|
oveq1d |
|
| 74 |
65
|
recnd |
|
| 75 |
37
|
adantr |
|
| 76 |
70 74 75
|
adddird |
|
| 77 |
75
|
mullidd |
|
| 78 |
73 76 77
|
3eqtr3d |
|
| 79 |
65 61
|
remulcld |
|
| 80 |
|
elicc01 |
|
| 81 |
57 80
|
sylib |
|
| 82 |
81
|
simp3d |
|
| 83 |
|
subge0 |
|
| 84 |
63 58 83
|
sylancr |
|
| 85 |
82 84
|
mpbird |
|
| 86 |
|
simplr3 |
|
| 87 |
61 67 65 85 86
|
lemul2ad |
|
| 88 |
79 68 62 87
|
leadd2dd |
|
| 89 |
78 88
|
eqbrtrrd |
|
| 90 |
58 67
|
remulcld |
|
| 91 |
81
|
simp2d |
|
| 92 |
61 67 58 91 86
|
lemul2ad |
|
| 93 |
62 90 68 92
|
leadd1dd |
|
| 94 |
72
|
oveq1d |
|
| 95 |
30
|
adantr |
|
| 96 |
70 74 95
|
adddird |
|
| 97 |
95
|
mullidd |
|
| 98 |
94 96 97
|
3eqtr3d |
|
| 99 |
93 98
|
breqtrd |
|
| 100 |
|
elicc2 |
|
| 101 |
61 67 100
|
syl2anc |
|
| 102 |
69 89 99 101
|
mpbir3and |
|
| 103 |
56 102
|
sseldd |
|
| 104 |
103
|
ralrimiva |
|
| 105 |
104
|
adantr |
|
| 106 |
|
oveq1 |
|
| 107 |
|
oveq2 |
|
| 108 |
107
|
oveq1d |
|
| 109 |
106 108
|
oveq12d |
|
| 110 |
109
|
eleq1d |
|
| 111 |
110
|
rspcv |
|
| 112 |
47 105 111
|
sylc |
|
| 113 |
45 112
|
eqeltrd |
|
| 114 |
113
|
ralrimiva |
|
| 115 |
|
oveq1 |
|
| 116 |
|
oveq2 |
|
| 117 |
116
|
oveq1d |
|
| 118 |
115 117
|
oveq12d |
|
| 119 |
118
|
eleq1d |
|
| 120 |
119
|
cbvralvw |
|
| 121 |
114 120
|
sylib |
|
| 122 |
18 23 10 121 104
|
wloglei |
|
| 123 |
122
|
r19.21bi |
|
| 124 |
123
|
anasss |
|
| 125 |
13 124
|
sylan2b |
|
| 126 |
|
eqid |
|
| 127 |
12 125 5 126
|
cvxsconn |
|
| 128 |
9 127
|
eqeltrrd |
|
| 129 |
128
|
ex |
|
| 130 |
4 129
|
impbid2 |
|