| Step |
Hyp |
Ref |
Expression |
| 1 |
|
reconnlem1 |
|
| 2 |
1
|
ralrimivva |
|
| 3 |
2
|
ex |
|
| 4 |
|
n0 |
|
| 5 |
|
n0 |
|
| 6 |
4 5
|
anbi12i |
|
| 7 |
|
exdistrv |
|
| 8 |
|
simplll |
|
| 9 |
|
simprll |
|
| 10 |
9
|
elin2d |
|
| 11 |
8 10
|
sseldd |
|
| 12 |
|
simprlr |
|
| 13 |
12
|
elin2d |
|
| 14 |
8 13
|
sseldd |
|
| 15 |
8
|
adantr |
|
| 16 |
|
simplrl |
|
| 17 |
16
|
ad2antrr |
|
| 18 |
|
simplrr |
|
| 19 |
18
|
ad2antrr |
|
| 20 |
|
simpllr |
|
| 21 |
9
|
adantr |
|
| 22 |
12
|
adantr |
|
| 23 |
|
simplrr |
|
| 24 |
|
simpr |
|
| 25 |
|
eqid |
|
| 26 |
15 17 19 20 21 22 23 24 25
|
reconnlem2 |
|
| 27 |
8
|
adantr |
|
| 28 |
18
|
ad2antrr |
|
| 29 |
16
|
ad2antrr |
|
| 30 |
|
simpllr |
|
| 31 |
12
|
adantr |
|
| 32 |
9
|
adantr |
|
| 33 |
|
incom |
|
| 34 |
|
simplrr |
|
| 35 |
33 34
|
eqsstrid |
|
| 36 |
|
simpr |
|
| 37 |
|
eqid |
|
| 38 |
27 28 29 30 31 32 35 36 37
|
reconnlem2 |
|
| 39 |
|
uncom |
|
| 40 |
39
|
sseq2i |
|
| 41 |
38 40
|
sylnib |
|
| 42 |
11 14 26 41
|
lecasei |
|
| 43 |
42
|
exp32 |
|
| 44 |
43
|
exlimdvv |
|
| 45 |
7 44
|
biimtrrid |
|
| 46 |
6 45
|
biimtrid |
|
| 47 |
46
|
expd |
|
| 48 |
47
|
3impd |
|
| 49 |
48
|
ex |
|
| 50 |
49
|
ralrimdvva |
|
| 51 |
|
retopon |
|
| 52 |
|
connsub |
|
| 53 |
51 52
|
mpan |
|
| 54 |
50 53
|
sylibrd |
|
| 55 |
3 54
|
impbid |
|