Metamath Proof Explorer


Theorem reconnlem2

Description: Lemma for reconn . (Contributed by Jeff Hankins, 17-Aug-2009) (Proof shortened by Mario Carneiro, 9-Sep-2015)

Ref Expression
Hypotheses reconnlem2.1 φ A
reconnlem2.2 φ U topGen ran .
reconnlem2.3 φ V topGen ran .
reconnlem2.4 φ x A y A x y A
reconnlem2.5 φ B U A
reconnlem2.6 φ C V A
reconnlem2.7 φ U V A
reconnlem2.8 φ B C
reconnlem2.9 S = sup U B C <
Assertion reconnlem2 φ ¬ A U V

Proof

Step Hyp Ref Expression
1 reconnlem2.1 φ A
2 reconnlem2.2 φ U topGen ran .
3 reconnlem2.3 φ V topGen ran .
4 reconnlem2.4 φ x A y A x y A
5 reconnlem2.5 φ B U A
6 reconnlem2.6 φ C V A
7 reconnlem2.7 φ U V A
8 reconnlem2.8 φ B C
9 reconnlem2.9 S = sup U B C <
10 inss2 U B C B C
11 5 elin2d φ B A
12 6 elin2d φ C A
13 oveq1 x = B x y = B y
14 13 sseq1d x = B x y A B y A
15 oveq2 y = C B y = B C
16 15 sseq1d y = C B y A B C A
17 14 16 rspc2va B A C A x A y A x y A B C A
18 11 12 4 17 syl21anc φ B C A
19 18 1 sstrd φ B C
20 10 19 sstrid φ U B C
21 5 elin1d φ B U
22 1 11 sseldd φ B
23 22 rexrd φ B *
24 1 12 sseldd φ C
25 24 rexrd φ C *
26 lbicc2 B * C * B C B B C
27 23 25 8 26 syl3anc φ B B C
28 21 27 elind φ B U B C
29 28 ne0d φ U B C
30 elinel2 w U B C w B C
31 elicc2 B C w B C w B w w C
32 22 24 31 syl2anc φ w B C w B w w C
33 simp3 w B w w C w C
34 32 33 syl6bi φ w B C w C
35 30 34 syl5 φ w U B C w C
36 35 ralrimiv φ w U B C w C
37 brralrspcev C w U B C w C z w U B C w z
38 24 36 37 syl2anc φ z w U B C w z
39 20 29 38 suprcld φ sup U B C <
40 9 39 eqeltrid φ S
41 rphalfcl r + r 2 +
42 ltaddrp S r 2 + S < S + r 2
43 40 41 42 syl2an φ r + S < S + r 2
44 40 adantr φ r + S
45 41 rpred r + r 2
46 readdcl S r 2 S + r 2
47 40 45 46 syl2an φ r + S + r 2
48 44 47 ltnled φ r + S < S + r 2 ¬ S + r 2 S
49 43 48 mpbid φ r + ¬ S + r 2 S
50 20 ad2antrr φ r + S + r 2 U −∞ C U B C
51 29 ad2antrr φ r + S + r 2 U −∞ C U B C
52 38 ad2antrr φ r + S + r 2 U −∞ C z w U B C w z
53 simpr φ r + S + r 2 U −∞ C S + r 2 U −∞ C
54 53 elin1d φ r + S + r 2 U −∞ C S + r 2 U
55 47 adantr φ r + S + r 2 U −∞ C S + r 2
56 22 ad2antrr φ r + S + r 2 U −∞ C B
57 40 ad2antrr φ r + S + r 2 U −∞ C S
58 20 29 38 28 suprubd φ B sup U B C <
59 58 9 breqtrrdi φ B S
60 59 ad2antrr φ r + S + r 2 U −∞ C B S
61 43 adantr φ r + S + r 2 U −∞ C S < S + r 2
62 57 55 61 ltled φ r + S + r 2 U −∞ C S S + r 2
63 56 57 55 60 62 letrd φ r + S + r 2 U −∞ C B S + r 2
64 24 ad2antrr φ r + S + r 2 U −∞ C C
65 53 elin2d φ r + S + r 2 U −∞ C S + r 2 −∞ C
66 eliooord S + r 2 −∞ C −∞ < S + r 2 S + r 2 < C
67 66 simprd S + r 2 −∞ C S + r 2 < C
68 65 67 syl φ r + S + r 2 U −∞ C S + r 2 < C
69 55 64 68 ltled φ r + S + r 2 U −∞ C S + r 2 C
70 elicc2 B C S + r 2 B C S + r 2 B S + r 2 S + r 2 C
71 56 64 70 syl2anc φ r + S + r 2 U −∞ C S + r 2 B C S + r 2 B S + r 2 S + r 2 C
72 55 63 69 71 mpbir3and φ r + S + r 2 U −∞ C S + r 2 B C
73 54 72 elind φ r + S + r 2 U −∞ C S + r 2 U B C
74 50 51 52 73 suprubd φ r + S + r 2 U −∞ C S + r 2 sup U B C <
75 74 9 breqtrrdi φ r + S + r 2 U −∞ C S + r 2 S
76 49 75 mtand φ r + ¬ S + r 2 U −∞ C
77 eqid abs 2 = abs 2
78 77 remetdval S + r 2 S S + r 2 abs 2 S = S + r 2 - S
79 47 44 78 syl2anc φ r + S + r 2 abs 2 S = S + r 2 - S
80 44 recnd φ r + S
81 45 adantl φ r + r 2
82 81 recnd φ r + r 2
83 80 82 pncan2d φ r + S + r 2 - S = r 2
84 83 fveq2d φ r + S + r 2 - S = r 2
85 41 adantl φ r + r 2 +
86 rpre r 2 + r 2
87 rpge0 r 2 + 0 r 2
88 86 87 absidd r 2 + r 2 = r 2
89 85 88 syl φ r + r 2 = r 2
90 79 84 89 3eqtrd φ r + S + r 2 abs 2 S = r 2
91 rphalflt r + r 2 < r
92 91 adantl φ r + r 2 < r
93 90 92 eqbrtrd φ r + S + r 2 abs 2 S < r
94 77 rexmet abs 2 ∞Met
95 94 a1i φ r + abs 2 ∞Met
96 rpxr r + r *
97 96 adantl φ r + r *
98 elbl3 abs 2 ∞Met r * S S + r 2 S + r 2 S ball abs 2 r S + r 2 abs 2 S < r
99 95 97 44 47 98 syl22anc φ r + S + r 2 S ball abs 2 r S + r 2 abs 2 S < r
100 93 99 mpbird φ r + S + r 2 S ball abs 2 r
101 ssel S ball abs 2 r U −∞ C S + r 2 S ball abs 2 r S + r 2 U −∞ C
102 100 101 syl5com φ r + S ball abs 2 r U −∞ C S + r 2 U −∞ C
103 76 102 mtod φ r + ¬ S ball abs 2 r U −∞ C
104 103 nrexdv φ ¬ r + S ball abs 2 r U −∞ C
105 40 adantr φ S U S
106 105 mnfltd φ S U −∞ < S
107 suprleub U B C U B C z w U B C w z C sup U B C < C w U B C w C
108 20 29 38 24 107 syl31anc φ sup U B C < C w U B C w C
109 36 108 mpbird φ sup U B C < C
110 9 109 eqbrtrid φ S C
111 40 24 leloed φ S C S < C S = C
112 110 111 mpbid φ S < C S = C
113 112 ord φ ¬ S < C S = C
114 elndif C A ¬ C A
115 12 114 syl φ ¬ C A
116 6 elin1d φ C V
117 elin C U V C U C V
118 7 sseld φ C U V C A
119 117 118 syl5bir φ C U C V C A
120 116 119 mpan2d φ C U C A
121 115 120 mtod φ ¬ C U
122 eleq1 S = C S U C U
123 122 notbid S = C ¬ S U ¬ C U
124 121 123 syl5ibrcom φ S = C ¬ S U
125 113 124 syld φ ¬ S < C ¬ S U
126 125 con4d φ S U S < C
127 126 imp φ S U S < C
128 mnfxr −∞ *
129 elioo2 −∞ * C * S −∞ C S −∞ < S S < C
130 128 25 129 sylancr φ S −∞ C S −∞ < S S < C
131 130 adantr φ S U S −∞ C S −∞ < S S < C
132 105 106 127 131 mpbir3and φ S U S −∞ C
133 132 ex φ S U S −∞ C
134 133 ancld φ S U S U S −∞ C
135 elin S U −∞ C S U S −∞ C
136 retop topGen ran . Top
137 iooretop −∞ C topGen ran .
138 inopn topGen ran . Top U topGen ran . −∞ C topGen ran . U −∞ C topGen ran .
139 136 137 138 mp3an13 U topGen ran . U −∞ C topGen ran .
140 eqid MetOpen abs 2 = MetOpen abs 2
141 77 140 tgioo topGen ran . = MetOpen abs 2
142 141 mopni2 abs 2 ∞Met U −∞ C topGen ran . S U −∞ C r + S ball abs 2 r U −∞ C
143 94 142 mp3an1 U −∞ C topGen ran . S U −∞ C r + S ball abs 2 r U −∞ C
144 143 ex U −∞ C topGen ran . S U −∞ C r + S ball abs 2 r U −∞ C
145 2 139 144 3syl φ S U −∞ C r + S ball abs 2 r U −∞ C
146 135 145 syl5bir φ S U S −∞ C r + S ball abs 2 r U −∞ C
147 134 146 syld φ S U r + S ball abs 2 r U −∞ C
148 104 147 mtod φ ¬ S U
149 ltsubrp S r + S r < S
150 40 149 sylan φ r + S r < S
151 rpre r + r
152 resubcl S r S r
153 40 151 152 syl2an φ r + S r
154 153 44 ltnled φ r + S r < S ¬ S S r
155 150 154 mpbid φ r + ¬ S S r
156 77 bl2ioo S r S ball abs 2 r = S r S + r
157 40 151 156 syl2an φ r + S ball abs 2 r = S r S + r
158 157 sseq1d φ r + S ball abs 2 r V S r S + r V
159 20 ad3antrrr φ r + S r S + r V w U B C U B C
160 simpr φ r + S r S + r V w U B C w U B C
161 159 160 sseldd φ r + S r S + r V w U B C w
162 153 ad2antrr φ r + S r S + r V w U B C S r
163 18 ad2antrr φ r + S r S + r V B C A
164 10 163 sstrid φ r + S r S + r V U B C A
165 164 sselda φ r + S r S + r V w U B C w A
166 elndif w A ¬ w A
167 165 166 syl φ r + S r S + r V w U B C ¬ w A
168 7 ad3antrrr φ r + S r S + r V w U B C S r < w U V A
169 simprl φ r + S r S + r V w U B C S r < w w U B C
170 169 elin1d φ r + S r S + r V w U B C S r < w w U
171 simplr φ r + S r S + r V w U B C S r < w S r S + r V
172 161 adantrr φ r + S r S + r V w U B C S r < w w
173 simprr φ r + S r S + r V w U B C S r < w S r < w
174 44 ad2antrr φ r + S r S + r V w U B C S r < w S
175 simpllr φ r + S r S + r V w U B C S r < w r +
176 175 rpred φ r + S r S + r V w U B C S r < w r
177 174 176 readdcld φ r + S r S + r V w U B C S r < w S + r
178 159 adantrr φ r + S r S + r V w U B C S r < w U B C
179 29 ad3antrrr φ r + S r S + r V w U B C S r < w U B C
180 38 ad3antrrr φ r + S r S + r V w U B C S r < w z w U B C w z
181 178 179 180 169 suprubd φ r + S r S + r V w U B C S r < w w sup U B C <
182 181 9 breqtrrdi φ r + S r S + r V w U B C S r < w w S
183 174 175 ltaddrpd φ r + S r S + r V w U B C S r < w S < S + r
184 172 174 177 182 183 lelttrd φ r + S r S + r V w U B C S r < w w < S + r
185 153 ad2antrr φ r + S r S + r V w U B C S r < w S r
186 rexr S r S r *
187 rexr S + r S + r *
188 elioo2 S r * S + r * w S r S + r w S r < w w < S + r
189 186 187 188 syl2an S r S + r w S r S + r w S r < w w < S + r
190 185 177 189 syl2anc φ r + S r S + r V w U B C S r < w w S r S + r w S r < w w < S + r
191 172 173 184 190 mpbir3and φ r + S r S + r V w U B C S r < w w S r S + r
192 171 191 sseldd φ r + S r S + r V w U B C S r < w w V
193 170 192 elind φ r + S r S + r V w U B C S r < w w U V
194 168 193 sseldd φ r + S r S + r V w U B C S r < w w A
195 194 expr φ r + S r S + r V w U B C S r < w w A
196 167 195 mtod φ r + S r S + r V w U B C ¬ S r < w
197 161 162 196 nltled φ r + S r S + r V w U B C w S r
198 197 ralrimiva φ r + S r S + r V w U B C w S r
199 20 ad2antrr φ r + S r S + r V U B C
200 29 ad2antrr φ r + S r S + r V U B C
201 38 ad2antrr φ r + S r S + r V z w U B C w z
202 153 adantr φ r + S r S + r V S r
203 suprleub U B C U B C z w U B C w z S r sup U B C < S r w U B C w S r
204 199 200 201 202 203 syl31anc φ r + S r S + r V sup U B C < S r w U B C w S r
205 198 204 mpbird φ r + S r S + r V sup U B C < S r
206 9 205 eqbrtrid φ r + S r S + r V S S r
207 206 ex φ r + S r S + r V S S r
208 158 207 sylbid φ r + S ball abs 2 r V S S r
209 155 208 mtod φ r + ¬ S ball abs 2 r V
210 209 nrexdv φ ¬ r + S ball abs 2 r V
211 141 mopni2 abs 2 ∞Met V topGen ran . S V r + S ball abs 2 r V
212 94 211 mp3an1 V topGen ran . S V r + S ball abs 2 r V
213 212 ex V topGen ran . S V r + S ball abs 2 r V
214 3 213 syl φ S V r + S ball abs 2 r V
215 210 214 mtod φ ¬ S V
216 ioran ¬ S U S V ¬ S U ¬ S V
217 148 215 216 sylanbrc φ ¬ S U S V
218 elun S U V S U S V
219 217 218 sylnibr φ ¬ S U V
220 elicc2 B C S B C S B S S C
221 22 24 220 syl2anc φ S B C S B S S C
222 40 59 110 221 mpbir3and φ S B C
223 18 222 sseldd φ S A
224 ssel A U V S A S U V
225 223 224 syl5com φ A U V S U V
226 219 225 mtod φ ¬ A U V