Metamath Proof Explorer


Theorem ltaddrp

Description: Adding a positive number to another number increases it. (Contributed by FL, 27-Dec-2007)

Ref Expression
Assertion ltaddrp AB+A<A+B

Proof

Step Hyp Ref Expression
1 elrp B+B0<B
2 ltaddpos BA0<BA<A+B
3 2 biimpd BA0<BA<A+B
4 3 expcom AB0<BA<A+B
5 4 imp32 AB0<BA<A+B
6 1 5 sylan2b AB+A<A+B