Step |
Hyp |
Ref |
Expression |
1 |
|
simplr |
|
2 |
|
retopon |
|
3 |
2
|
a1i |
|
4 |
|
simplll |
|
5 |
|
iooretop |
|
6 |
5
|
a1i |
|
7 |
|
iooretop |
|
8 |
7
|
a1i |
|
9 |
|
simplrl |
|
10 |
4 9
|
sseldd |
|
11 |
10
|
mnfltd |
|
12 |
|
eldifn |
|
13 |
12
|
adantl |
|
14 |
|
eleq1 |
|
15 |
9 14
|
syl5ibcom |
|
16 |
13 15
|
mtod |
|
17 |
|
eldifi |
|
18 |
17
|
adantl |
|
19 |
|
simplrr |
|
20 |
4 19
|
sseldd |
|
21 |
|
elicc2 |
|
22 |
10 20 21
|
syl2anc |
|
23 |
18 22
|
mpbid |
|
24 |
23
|
simp2d |
|
25 |
23
|
simp1d |
|
26 |
10 25
|
leloed |
|
27 |
24 26
|
mpbid |
|
28 |
27
|
ord |
|
29 |
16 28
|
mt3d |
|
30 |
|
mnfxr |
|
31 |
25
|
rexrd |
|
32 |
|
elioo2 |
|
33 |
30 31 32
|
sylancr |
|
34 |
10 11 29 33
|
mpbir3and |
|
35 |
|
inelcm |
|
36 |
34 9 35
|
syl2anc |
|
37 |
|
eleq1 |
|
38 |
19 37
|
syl5ibrcom |
|
39 |
13 38
|
mtod |
|
40 |
23
|
simp3d |
|
41 |
25 20
|
leloed |
|
42 |
40 41
|
mpbid |
|
43 |
42
|
ord |
|
44 |
39 43
|
mt3d |
|
45 |
20
|
ltpnfd |
|
46 |
|
pnfxr |
|
47 |
|
elioo2 |
|
48 |
31 46 47
|
sylancl |
|
49 |
20 44 45 48
|
mpbir3and |
|
50 |
|
inelcm |
|
51 |
49 19 50
|
syl2anc |
|
52 |
|
inss1 |
|
53 |
31 30
|
jctil |
|
54 |
31 46
|
jctir |
|
55 |
25
|
leidd |
|
56 |
|
ioodisj |
|
57 |
53 54 55 56
|
syl21anc |
|
58 |
|
sseq0 |
|
59 |
52 57 58
|
sylancr |
|
60 |
30
|
a1i |
|
61 |
46
|
a1i |
|
62 |
25
|
mnfltd |
|
63 |
25
|
ltpnfd |
|
64 |
|
ioojoin |
|
65 |
60 31 61 62 63 64
|
syl32anc |
|
66 |
|
unass |
|
67 |
|
un12 |
|
68 |
66 67
|
eqtri |
|
69 |
|
ioomax |
|
70 |
65 68 69
|
3eqtr3g |
|
71 |
4 70
|
sseqtrrd |
|
72 |
|
disjsn |
|
73 |
13 72
|
sylibr |
|
74 |
|
disjssun |
|
75 |
73 74
|
syl |
|
76 |
71 75
|
mpbid |
|
77 |
3 4 6 8 36 51 59 76
|
nconnsubb |
|
78 |
77
|
ex |
|
79 |
1 78
|
mt2d |
|
80 |
79
|
eq0rdv |
|
81 |
|
ssdif0 |
|
82 |
80 81
|
sylibr |
|