| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simplr |
|- ( ( ( A C_ RR /\ ( ( topGen ` ran (,) ) |`t A ) e. Conn ) /\ ( X e. A /\ Y e. A ) ) -> ( ( topGen ` ran (,) ) |`t A ) e. Conn ) |
| 2 |
|
retopon |
|- ( topGen ` ran (,) ) e. ( TopOn ` RR ) |
| 3 |
2
|
a1i |
|- ( ( ( ( A C_ RR /\ ( ( topGen ` ran (,) ) |`t A ) e. Conn ) /\ ( X e. A /\ Y e. A ) ) /\ z e. ( ( X [,] Y ) \ A ) ) -> ( topGen ` ran (,) ) e. ( TopOn ` RR ) ) |
| 4 |
|
simplll |
|- ( ( ( ( A C_ RR /\ ( ( topGen ` ran (,) ) |`t A ) e. Conn ) /\ ( X e. A /\ Y e. A ) ) /\ z e. ( ( X [,] Y ) \ A ) ) -> A C_ RR ) |
| 5 |
|
iooretop |
|- ( -oo (,) z ) e. ( topGen ` ran (,) ) |
| 6 |
5
|
a1i |
|- ( ( ( ( A C_ RR /\ ( ( topGen ` ran (,) ) |`t A ) e. Conn ) /\ ( X e. A /\ Y e. A ) ) /\ z e. ( ( X [,] Y ) \ A ) ) -> ( -oo (,) z ) e. ( topGen ` ran (,) ) ) |
| 7 |
|
iooretop |
|- ( z (,) +oo ) e. ( topGen ` ran (,) ) |
| 8 |
7
|
a1i |
|- ( ( ( ( A C_ RR /\ ( ( topGen ` ran (,) ) |`t A ) e. Conn ) /\ ( X e. A /\ Y e. A ) ) /\ z e. ( ( X [,] Y ) \ A ) ) -> ( z (,) +oo ) e. ( topGen ` ran (,) ) ) |
| 9 |
|
simplrl |
|- ( ( ( ( A C_ RR /\ ( ( topGen ` ran (,) ) |`t A ) e. Conn ) /\ ( X e. A /\ Y e. A ) ) /\ z e. ( ( X [,] Y ) \ A ) ) -> X e. A ) |
| 10 |
4 9
|
sseldd |
|- ( ( ( ( A C_ RR /\ ( ( topGen ` ran (,) ) |`t A ) e. Conn ) /\ ( X e. A /\ Y e. A ) ) /\ z e. ( ( X [,] Y ) \ A ) ) -> X e. RR ) |
| 11 |
10
|
mnfltd |
|- ( ( ( ( A C_ RR /\ ( ( topGen ` ran (,) ) |`t A ) e. Conn ) /\ ( X e. A /\ Y e. A ) ) /\ z e. ( ( X [,] Y ) \ A ) ) -> -oo < X ) |
| 12 |
|
eldifn |
|- ( z e. ( ( X [,] Y ) \ A ) -> -. z e. A ) |
| 13 |
12
|
adantl |
|- ( ( ( ( A C_ RR /\ ( ( topGen ` ran (,) ) |`t A ) e. Conn ) /\ ( X e. A /\ Y e. A ) ) /\ z e. ( ( X [,] Y ) \ A ) ) -> -. z e. A ) |
| 14 |
|
eleq1 |
|- ( X = z -> ( X e. A <-> z e. A ) ) |
| 15 |
9 14
|
syl5ibcom |
|- ( ( ( ( A C_ RR /\ ( ( topGen ` ran (,) ) |`t A ) e. Conn ) /\ ( X e. A /\ Y e. A ) ) /\ z e. ( ( X [,] Y ) \ A ) ) -> ( X = z -> z e. A ) ) |
| 16 |
13 15
|
mtod |
|- ( ( ( ( A C_ RR /\ ( ( topGen ` ran (,) ) |`t A ) e. Conn ) /\ ( X e. A /\ Y e. A ) ) /\ z e. ( ( X [,] Y ) \ A ) ) -> -. X = z ) |
| 17 |
|
eldifi |
|- ( z e. ( ( X [,] Y ) \ A ) -> z e. ( X [,] Y ) ) |
| 18 |
17
|
adantl |
|- ( ( ( ( A C_ RR /\ ( ( topGen ` ran (,) ) |`t A ) e. Conn ) /\ ( X e. A /\ Y e. A ) ) /\ z e. ( ( X [,] Y ) \ A ) ) -> z e. ( X [,] Y ) ) |
| 19 |
|
simplrr |
|- ( ( ( ( A C_ RR /\ ( ( topGen ` ran (,) ) |`t A ) e. Conn ) /\ ( X e. A /\ Y e. A ) ) /\ z e. ( ( X [,] Y ) \ A ) ) -> Y e. A ) |
| 20 |
4 19
|
sseldd |
|- ( ( ( ( A C_ RR /\ ( ( topGen ` ran (,) ) |`t A ) e. Conn ) /\ ( X e. A /\ Y e. A ) ) /\ z e. ( ( X [,] Y ) \ A ) ) -> Y e. RR ) |
| 21 |
|
elicc2 |
|- ( ( X e. RR /\ Y e. RR ) -> ( z e. ( X [,] Y ) <-> ( z e. RR /\ X <_ z /\ z <_ Y ) ) ) |
| 22 |
10 20 21
|
syl2anc |
|- ( ( ( ( A C_ RR /\ ( ( topGen ` ran (,) ) |`t A ) e. Conn ) /\ ( X e. A /\ Y e. A ) ) /\ z e. ( ( X [,] Y ) \ A ) ) -> ( z e. ( X [,] Y ) <-> ( z e. RR /\ X <_ z /\ z <_ Y ) ) ) |
| 23 |
18 22
|
mpbid |
|- ( ( ( ( A C_ RR /\ ( ( topGen ` ran (,) ) |`t A ) e. Conn ) /\ ( X e. A /\ Y e. A ) ) /\ z e. ( ( X [,] Y ) \ A ) ) -> ( z e. RR /\ X <_ z /\ z <_ Y ) ) |
| 24 |
23
|
simp2d |
|- ( ( ( ( A C_ RR /\ ( ( topGen ` ran (,) ) |`t A ) e. Conn ) /\ ( X e. A /\ Y e. A ) ) /\ z e. ( ( X [,] Y ) \ A ) ) -> X <_ z ) |
| 25 |
23
|
simp1d |
|- ( ( ( ( A C_ RR /\ ( ( topGen ` ran (,) ) |`t A ) e. Conn ) /\ ( X e. A /\ Y e. A ) ) /\ z e. ( ( X [,] Y ) \ A ) ) -> z e. RR ) |
| 26 |
10 25
|
leloed |
|- ( ( ( ( A C_ RR /\ ( ( topGen ` ran (,) ) |`t A ) e. Conn ) /\ ( X e. A /\ Y e. A ) ) /\ z e. ( ( X [,] Y ) \ A ) ) -> ( X <_ z <-> ( X < z \/ X = z ) ) ) |
| 27 |
24 26
|
mpbid |
|- ( ( ( ( A C_ RR /\ ( ( topGen ` ran (,) ) |`t A ) e. Conn ) /\ ( X e. A /\ Y e. A ) ) /\ z e. ( ( X [,] Y ) \ A ) ) -> ( X < z \/ X = z ) ) |
| 28 |
27
|
ord |
|- ( ( ( ( A C_ RR /\ ( ( topGen ` ran (,) ) |`t A ) e. Conn ) /\ ( X e. A /\ Y e. A ) ) /\ z e. ( ( X [,] Y ) \ A ) ) -> ( -. X < z -> X = z ) ) |
| 29 |
16 28
|
mt3d |
|- ( ( ( ( A C_ RR /\ ( ( topGen ` ran (,) ) |`t A ) e. Conn ) /\ ( X e. A /\ Y e. A ) ) /\ z e. ( ( X [,] Y ) \ A ) ) -> X < z ) |
| 30 |
|
mnfxr |
|- -oo e. RR* |
| 31 |
25
|
rexrd |
|- ( ( ( ( A C_ RR /\ ( ( topGen ` ran (,) ) |`t A ) e. Conn ) /\ ( X e. A /\ Y e. A ) ) /\ z e. ( ( X [,] Y ) \ A ) ) -> z e. RR* ) |
| 32 |
|
elioo2 |
|- ( ( -oo e. RR* /\ z e. RR* ) -> ( X e. ( -oo (,) z ) <-> ( X e. RR /\ -oo < X /\ X < z ) ) ) |
| 33 |
30 31 32
|
sylancr |
|- ( ( ( ( A C_ RR /\ ( ( topGen ` ran (,) ) |`t A ) e. Conn ) /\ ( X e. A /\ Y e. A ) ) /\ z e. ( ( X [,] Y ) \ A ) ) -> ( X e. ( -oo (,) z ) <-> ( X e. RR /\ -oo < X /\ X < z ) ) ) |
| 34 |
10 11 29 33
|
mpbir3and |
|- ( ( ( ( A C_ RR /\ ( ( topGen ` ran (,) ) |`t A ) e. Conn ) /\ ( X e. A /\ Y e. A ) ) /\ z e. ( ( X [,] Y ) \ A ) ) -> X e. ( -oo (,) z ) ) |
| 35 |
|
inelcm |
|- ( ( X e. ( -oo (,) z ) /\ X e. A ) -> ( ( -oo (,) z ) i^i A ) =/= (/) ) |
| 36 |
34 9 35
|
syl2anc |
|- ( ( ( ( A C_ RR /\ ( ( topGen ` ran (,) ) |`t A ) e. Conn ) /\ ( X e. A /\ Y e. A ) ) /\ z e. ( ( X [,] Y ) \ A ) ) -> ( ( -oo (,) z ) i^i A ) =/= (/) ) |
| 37 |
|
eleq1 |
|- ( z = Y -> ( z e. A <-> Y e. A ) ) |
| 38 |
19 37
|
syl5ibrcom |
|- ( ( ( ( A C_ RR /\ ( ( topGen ` ran (,) ) |`t A ) e. Conn ) /\ ( X e. A /\ Y e. A ) ) /\ z e. ( ( X [,] Y ) \ A ) ) -> ( z = Y -> z e. A ) ) |
| 39 |
13 38
|
mtod |
|- ( ( ( ( A C_ RR /\ ( ( topGen ` ran (,) ) |`t A ) e. Conn ) /\ ( X e. A /\ Y e. A ) ) /\ z e. ( ( X [,] Y ) \ A ) ) -> -. z = Y ) |
| 40 |
23
|
simp3d |
|- ( ( ( ( A C_ RR /\ ( ( topGen ` ran (,) ) |`t A ) e. Conn ) /\ ( X e. A /\ Y e. A ) ) /\ z e. ( ( X [,] Y ) \ A ) ) -> z <_ Y ) |
| 41 |
25 20
|
leloed |
|- ( ( ( ( A C_ RR /\ ( ( topGen ` ran (,) ) |`t A ) e. Conn ) /\ ( X e. A /\ Y e. A ) ) /\ z e. ( ( X [,] Y ) \ A ) ) -> ( z <_ Y <-> ( z < Y \/ z = Y ) ) ) |
| 42 |
40 41
|
mpbid |
|- ( ( ( ( A C_ RR /\ ( ( topGen ` ran (,) ) |`t A ) e. Conn ) /\ ( X e. A /\ Y e. A ) ) /\ z e. ( ( X [,] Y ) \ A ) ) -> ( z < Y \/ z = Y ) ) |
| 43 |
42
|
ord |
|- ( ( ( ( A C_ RR /\ ( ( topGen ` ran (,) ) |`t A ) e. Conn ) /\ ( X e. A /\ Y e. A ) ) /\ z e. ( ( X [,] Y ) \ A ) ) -> ( -. z < Y -> z = Y ) ) |
| 44 |
39 43
|
mt3d |
|- ( ( ( ( A C_ RR /\ ( ( topGen ` ran (,) ) |`t A ) e. Conn ) /\ ( X e. A /\ Y e. A ) ) /\ z e. ( ( X [,] Y ) \ A ) ) -> z < Y ) |
| 45 |
20
|
ltpnfd |
|- ( ( ( ( A C_ RR /\ ( ( topGen ` ran (,) ) |`t A ) e. Conn ) /\ ( X e. A /\ Y e. A ) ) /\ z e. ( ( X [,] Y ) \ A ) ) -> Y < +oo ) |
| 46 |
|
pnfxr |
|- +oo e. RR* |
| 47 |
|
elioo2 |
|- ( ( z e. RR* /\ +oo e. RR* ) -> ( Y e. ( z (,) +oo ) <-> ( Y e. RR /\ z < Y /\ Y < +oo ) ) ) |
| 48 |
31 46 47
|
sylancl |
|- ( ( ( ( A C_ RR /\ ( ( topGen ` ran (,) ) |`t A ) e. Conn ) /\ ( X e. A /\ Y e. A ) ) /\ z e. ( ( X [,] Y ) \ A ) ) -> ( Y e. ( z (,) +oo ) <-> ( Y e. RR /\ z < Y /\ Y < +oo ) ) ) |
| 49 |
20 44 45 48
|
mpbir3and |
|- ( ( ( ( A C_ RR /\ ( ( topGen ` ran (,) ) |`t A ) e. Conn ) /\ ( X e. A /\ Y e. A ) ) /\ z e. ( ( X [,] Y ) \ A ) ) -> Y e. ( z (,) +oo ) ) |
| 50 |
|
inelcm |
|- ( ( Y e. ( z (,) +oo ) /\ Y e. A ) -> ( ( z (,) +oo ) i^i A ) =/= (/) ) |
| 51 |
49 19 50
|
syl2anc |
|- ( ( ( ( A C_ RR /\ ( ( topGen ` ran (,) ) |`t A ) e. Conn ) /\ ( X e. A /\ Y e. A ) ) /\ z e. ( ( X [,] Y ) \ A ) ) -> ( ( z (,) +oo ) i^i A ) =/= (/) ) |
| 52 |
|
inss1 |
|- ( ( ( -oo (,) z ) i^i ( z (,) +oo ) ) i^i A ) C_ ( ( -oo (,) z ) i^i ( z (,) +oo ) ) |
| 53 |
31 30
|
jctil |
|- ( ( ( ( A C_ RR /\ ( ( topGen ` ran (,) ) |`t A ) e. Conn ) /\ ( X e. A /\ Y e. A ) ) /\ z e. ( ( X [,] Y ) \ A ) ) -> ( -oo e. RR* /\ z e. RR* ) ) |
| 54 |
31 46
|
jctir |
|- ( ( ( ( A C_ RR /\ ( ( topGen ` ran (,) ) |`t A ) e. Conn ) /\ ( X e. A /\ Y e. A ) ) /\ z e. ( ( X [,] Y ) \ A ) ) -> ( z e. RR* /\ +oo e. RR* ) ) |
| 55 |
25
|
leidd |
|- ( ( ( ( A C_ RR /\ ( ( topGen ` ran (,) ) |`t A ) e. Conn ) /\ ( X e. A /\ Y e. A ) ) /\ z e. ( ( X [,] Y ) \ A ) ) -> z <_ z ) |
| 56 |
|
ioodisj |
|- ( ( ( ( -oo e. RR* /\ z e. RR* ) /\ ( z e. RR* /\ +oo e. RR* ) ) /\ z <_ z ) -> ( ( -oo (,) z ) i^i ( z (,) +oo ) ) = (/) ) |
| 57 |
53 54 55 56
|
syl21anc |
|- ( ( ( ( A C_ RR /\ ( ( topGen ` ran (,) ) |`t A ) e. Conn ) /\ ( X e. A /\ Y e. A ) ) /\ z e. ( ( X [,] Y ) \ A ) ) -> ( ( -oo (,) z ) i^i ( z (,) +oo ) ) = (/) ) |
| 58 |
|
sseq0 |
|- ( ( ( ( ( -oo (,) z ) i^i ( z (,) +oo ) ) i^i A ) C_ ( ( -oo (,) z ) i^i ( z (,) +oo ) ) /\ ( ( -oo (,) z ) i^i ( z (,) +oo ) ) = (/) ) -> ( ( ( -oo (,) z ) i^i ( z (,) +oo ) ) i^i A ) = (/) ) |
| 59 |
52 57 58
|
sylancr |
|- ( ( ( ( A C_ RR /\ ( ( topGen ` ran (,) ) |`t A ) e. Conn ) /\ ( X e. A /\ Y e. A ) ) /\ z e. ( ( X [,] Y ) \ A ) ) -> ( ( ( -oo (,) z ) i^i ( z (,) +oo ) ) i^i A ) = (/) ) |
| 60 |
30
|
a1i |
|- ( ( ( ( A C_ RR /\ ( ( topGen ` ran (,) ) |`t A ) e. Conn ) /\ ( X e. A /\ Y e. A ) ) /\ z e. ( ( X [,] Y ) \ A ) ) -> -oo e. RR* ) |
| 61 |
46
|
a1i |
|- ( ( ( ( A C_ RR /\ ( ( topGen ` ran (,) ) |`t A ) e. Conn ) /\ ( X e. A /\ Y e. A ) ) /\ z e. ( ( X [,] Y ) \ A ) ) -> +oo e. RR* ) |
| 62 |
25
|
mnfltd |
|- ( ( ( ( A C_ RR /\ ( ( topGen ` ran (,) ) |`t A ) e. Conn ) /\ ( X e. A /\ Y e. A ) ) /\ z e. ( ( X [,] Y ) \ A ) ) -> -oo < z ) |
| 63 |
25
|
ltpnfd |
|- ( ( ( ( A C_ RR /\ ( ( topGen ` ran (,) ) |`t A ) e. Conn ) /\ ( X e. A /\ Y e. A ) ) /\ z e. ( ( X [,] Y ) \ A ) ) -> z < +oo ) |
| 64 |
|
ioojoin |
|- ( ( ( -oo e. RR* /\ z e. RR* /\ +oo e. RR* ) /\ ( -oo < z /\ z < +oo ) ) -> ( ( ( -oo (,) z ) u. { z } ) u. ( z (,) +oo ) ) = ( -oo (,) +oo ) ) |
| 65 |
60 31 61 62 63 64
|
syl32anc |
|- ( ( ( ( A C_ RR /\ ( ( topGen ` ran (,) ) |`t A ) e. Conn ) /\ ( X e. A /\ Y e. A ) ) /\ z e. ( ( X [,] Y ) \ A ) ) -> ( ( ( -oo (,) z ) u. { z } ) u. ( z (,) +oo ) ) = ( -oo (,) +oo ) ) |
| 66 |
|
unass |
|- ( ( ( -oo (,) z ) u. { z } ) u. ( z (,) +oo ) ) = ( ( -oo (,) z ) u. ( { z } u. ( z (,) +oo ) ) ) |
| 67 |
|
un12 |
|- ( ( -oo (,) z ) u. ( { z } u. ( z (,) +oo ) ) ) = ( { z } u. ( ( -oo (,) z ) u. ( z (,) +oo ) ) ) |
| 68 |
66 67
|
eqtri |
|- ( ( ( -oo (,) z ) u. { z } ) u. ( z (,) +oo ) ) = ( { z } u. ( ( -oo (,) z ) u. ( z (,) +oo ) ) ) |
| 69 |
|
ioomax |
|- ( -oo (,) +oo ) = RR |
| 70 |
65 68 69
|
3eqtr3g |
|- ( ( ( ( A C_ RR /\ ( ( topGen ` ran (,) ) |`t A ) e. Conn ) /\ ( X e. A /\ Y e. A ) ) /\ z e. ( ( X [,] Y ) \ A ) ) -> ( { z } u. ( ( -oo (,) z ) u. ( z (,) +oo ) ) ) = RR ) |
| 71 |
4 70
|
sseqtrrd |
|- ( ( ( ( A C_ RR /\ ( ( topGen ` ran (,) ) |`t A ) e. Conn ) /\ ( X e. A /\ Y e. A ) ) /\ z e. ( ( X [,] Y ) \ A ) ) -> A C_ ( { z } u. ( ( -oo (,) z ) u. ( z (,) +oo ) ) ) ) |
| 72 |
|
disjsn |
|- ( ( A i^i { z } ) = (/) <-> -. z e. A ) |
| 73 |
13 72
|
sylibr |
|- ( ( ( ( A C_ RR /\ ( ( topGen ` ran (,) ) |`t A ) e. Conn ) /\ ( X e. A /\ Y e. A ) ) /\ z e. ( ( X [,] Y ) \ A ) ) -> ( A i^i { z } ) = (/) ) |
| 74 |
|
disjssun |
|- ( ( A i^i { z } ) = (/) -> ( A C_ ( { z } u. ( ( -oo (,) z ) u. ( z (,) +oo ) ) ) <-> A C_ ( ( -oo (,) z ) u. ( z (,) +oo ) ) ) ) |
| 75 |
73 74
|
syl |
|- ( ( ( ( A C_ RR /\ ( ( topGen ` ran (,) ) |`t A ) e. Conn ) /\ ( X e. A /\ Y e. A ) ) /\ z e. ( ( X [,] Y ) \ A ) ) -> ( A C_ ( { z } u. ( ( -oo (,) z ) u. ( z (,) +oo ) ) ) <-> A C_ ( ( -oo (,) z ) u. ( z (,) +oo ) ) ) ) |
| 76 |
71 75
|
mpbid |
|- ( ( ( ( A C_ RR /\ ( ( topGen ` ran (,) ) |`t A ) e. Conn ) /\ ( X e. A /\ Y e. A ) ) /\ z e. ( ( X [,] Y ) \ A ) ) -> A C_ ( ( -oo (,) z ) u. ( z (,) +oo ) ) ) |
| 77 |
3 4 6 8 36 51 59 76
|
nconnsubb |
|- ( ( ( ( A C_ RR /\ ( ( topGen ` ran (,) ) |`t A ) e. Conn ) /\ ( X e. A /\ Y e. A ) ) /\ z e. ( ( X [,] Y ) \ A ) ) -> -. ( ( topGen ` ran (,) ) |`t A ) e. Conn ) |
| 78 |
77
|
ex |
|- ( ( ( A C_ RR /\ ( ( topGen ` ran (,) ) |`t A ) e. Conn ) /\ ( X e. A /\ Y e. A ) ) -> ( z e. ( ( X [,] Y ) \ A ) -> -. ( ( topGen ` ran (,) ) |`t A ) e. Conn ) ) |
| 79 |
1 78
|
mt2d |
|- ( ( ( A C_ RR /\ ( ( topGen ` ran (,) ) |`t A ) e. Conn ) /\ ( X e. A /\ Y e. A ) ) -> -. z e. ( ( X [,] Y ) \ A ) ) |
| 80 |
79
|
eq0rdv |
|- ( ( ( A C_ RR /\ ( ( topGen ` ran (,) ) |`t A ) e. Conn ) /\ ( X e. A /\ Y e. A ) ) -> ( ( X [,] Y ) \ A ) = (/) ) |
| 81 |
|
ssdif0 |
|- ( ( X [,] Y ) C_ A <-> ( ( X [,] Y ) \ A ) = (/) ) |
| 82 |
80 81
|
sylibr |
|- ( ( ( A C_ RR /\ ( ( topGen ` ran (,) ) |`t A ) e. Conn ) /\ ( X e. A /\ Y e. A ) ) -> ( X [,] Y ) C_ A ) |