Step |
Hyp |
Ref |
Expression |
1 |
|
resconn.1 |
⊢ 𝐽 = ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) |
2 |
|
sconnpconn |
⊢ ( 𝐽 ∈ SConn → 𝐽 ∈ PConn ) |
3 |
|
pconnconn |
⊢ ( 𝐽 ∈ PConn → 𝐽 ∈ Conn ) |
4 |
2 3
|
syl |
⊢ ( 𝐽 ∈ SConn → 𝐽 ∈ Conn ) |
5 |
|
eqid |
⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) |
6 |
|
eqid |
⊢ ( topGen ‘ ran (,) ) = ( topGen ‘ ran (,) ) |
7 |
5 6
|
rerest |
⊢ ( 𝐴 ⊆ ℝ → ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) = ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ) |
8 |
7 1
|
eqtr4di |
⊢ ( 𝐴 ⊆ ℝ → ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) = 𝐽 ) |
9 |
8
|
adantr |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn ) → ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) = 𝐽 ) |
10 |
|
simpl |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn ) → 𝐴 ⊆ ℝ ) |
11 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
12 |
10 11
|
sstrdi |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn ) → 𝐴 ⊆ ℂ ) |
13 |
|
df-3an |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑡 ∈ ( 0 [,] 1 ) ) ↔ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑡 ∈ ( 0 [,] 1 ) ) ) |
14 |
|
oveq2 |
⊢ ( 𝑧 = 𝑥 → ( 𝑡 · 𝑧 ) = ( 𝑡 · 𝑥 ) ) |
15 |
|
oveq2 |
⊢ ( 𝑤 = 𝑦 → ( ( 1 − 𝑡 ) · 𝑤 ) = ( ( 1 − 𝑡 ) · 𝑦 ) ) |
16 |
14 15
|
oveqan12d |
⊢ ( ( 𝑧 = 𝑥 ∧ 𝑤 = 𝑦 ) → ( ( 𝑡 · 𝑧 ) + ( ( 1 − 𝑡 ) · 𝑤 ) ) = ( ( 𝑡 · 𝑥 ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) ) |
17 |
16
|
eleq1d |
⊢ ( ( 𝑧 = 𝑥 ∧ 𝑤 = 𝑦 ) → ( ( ( 𝑡 · 𝑧 ) + ( ( 1 − 𝑡 ) · 𝑤 ) ) ∈ 𝐴 ↔ ( ( 𝑡 · 𝑥 ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) ∈ 𝐴 ) ) |
18 |
17
|
ralbidv |
⊢ ( ( 𝑧 = 𝑥 ∧ 𝑤 = 𝑦 ) → ( ∀ 𝑡 ∈ ( 0 [,] 1 ) ( ( 𝑡 · 𝑧 ) + ( ( 1 − 𝑡 ) · 𝑤 ) ) ∈ 𝐴 ↔ ∀ 𝑡 ∈ ( 0 [,] 1 ) ( ( 𝑡 · 𝑥 ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) ∈ 𝐴 ) ) |
19 |
|
oveq2 |
⊢ ( 𝑧 = 𝑦 → ( 𝑡 · 𝑧 ) = ( 𝑡 · 𝑦 ) ) |
20 |
|
oveq2 |
⊢ ( 𝑤 = 𝑥 → ( ( 1 − 𝑡 ) · 𝑤 ) = ( ( 1 − 𝑡 ) · 𝑥 ) ) |
21 |
19 20
|
oveqan12d |
⊢ ( ( 𝑧 = 𝑦 ∧ 𝑤 = 𝑥 ) → ( ( 𝑡 · 𝑧 ) + ( ( 1 − 𝑡 ) · 𝑤 ) ) = ( ( 𝑡 · 𝑦 ) + ( ( 1 − 𝑡 ) · 𝑥 ) ) ) |
22 |
21
|
eleq1d |
⊢ ( ( 𝑧 = 𝑦 ∧ 𝑤 = 𝑥 ) → ( ( ( 𝑡 · 𝑧 ) + ( ( 1 − 𝑡 ) · 𝑤 ) ) ∈ 𝐴 ↔ ( ( 𝑡 · 𝑦 ) + ( ( 1 − 𝑡 ) · 𝑥 ) ) ∈ 𝐴 ) ) |
23 |
22
|
ralbidv |
⊢ ( ( 𝑧 = 𝑦 ∧ 𝑤 = 𝑥 ) → ( ∀ 𝑡 ∈ ( 0 [,] 1 ) ( ( 𝑡 · 𝑧 ) + ( ( 1 − 𝑡 ) · 𝑤 ) ) ∈ 𝐴 ↔ ∀ 𝑡 ∈ ( 0 [,] 1 ) ( ( 𝑡 · 𝑦 ) + ( ( 1 − 𝑡 ) · 𝑥 ) ) ∈ 𝐴 ) ) |
24 |
|
unitssre |
⊢ ( 0 [,] 1 ) ⊆ ℝ |
25 |
24 11
|
sstri |
⊢ ( 0 [,] 1 ) ⊆ ℂ |
26 |
|
simpr |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑥 ≤ 𝑦 ) ) ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → 𝑠 ∈ ( 0 [,] 1 ) ) |
27 |
25 26
|
sselid |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑥 ≤ 𝑦 ) ) ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → 𝑠 ∈ ℂ ) |
28 |
12
|
adantr |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑥 ≤ 𝑦 ) ) → 𝐴 ⊆ ℂ ) |
29 |
|
simpr2 |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑥 ≤ 𝑦 ) ) → 𝑦 ∈ 𝐴 ) |
30 |
28 29
|
sseldd |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑥 ≤ 𝑦 ) ) → 𝑦 ∈ ℂ ) |
31 |
30
|
adantr |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑥 ≤ 𝑦 ) ) ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → 𝑦 ∈ ℂ ) |
32 |
27 31
|
mulcld |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑥 ≤ 𝑦 ) ) ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 𝑠 · 𝑦 ) ∈ ℂ ) |
33 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
34 |
|
subcl |
⊢ ( ( 1 ∈ ℂ ∧ 𝑠 ∈ ℂ ) → ( 1 − 𝑠 ) ∈ ℂ ) |
35 |
33 27 34
|
sylancr |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑥 ≤ 𝑦 ) ) ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 1 − 𝑠 ) ∈ ℂ ) |
36 |
|
simpr1 |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑥 ≤ 𝑦 ) ) → 𝑥 ∈ 𝐴 ) |
37 |
28 36
|
sseldd |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑥 ≤ 𝑦 ) ) → 𝑥 ∈ ℂ ) |
38 |
37
|
adantr |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑥 ≤ 𝑦 ) ) ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → 𝑥 ∈ ℂ ) |
39 |
35 38
|
mulcld |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑥 ≤ 𝑦 ) ) ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( ( 1 − 𝑠 ) · 𝑥 ) ∈ ℂ ) |
40 |
32 39
|
addcomd |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑥 ≤ 𝑦 ) ) ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( ( 𝑠 · 𝑦 ) + ( ( 1 − 𝑠 ) · 𝑥 ) ) = ( ( ( 1 − 𝑠 ) · 𝑥 ) + ( 𝑠 · 𝑦 ) ) ) |
41 |
|
nncan |
⊢ ( ( 1 ∈ ℂ ∧ 𝑠 ∈ ℂ ) → ( 1 − ( 1 − 𝑠 ) ) = 𝑠 ) |
42 |
33 27 41
|
sylancr |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑥 ≤ 𝑦 ) ) ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 1 − ( 1 − 𝑠 ) ) = 𝑠 ) |
43 |
42
|
oveq1d |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑥 ≤ 𝑦 ) ) ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( ( 1 − ( 1 − 𝑠 ) ) · 𝑦 ) = ( 𝑠 · 𝑦 ) ) |
44 |
43
|
oveq2d |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑥 ≤ 𝑦 ) ) ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( ( ( 1 − 𝑠 ) · 𝑥 ) + ( ( 1 − ( 1 − 𝑠 ) ) · 𝑦 ) ) = ( ( ( 1 − 𝑠 ) · 𝑥 ) + ( 𝑠 · 𝑦 ) ) ) |
45 |
40 44
|
eqtr4d |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑥 ≤ 𝑦 ) ) ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( ( 𝑠 · 𝑦 ) + ( ( 1 − 𝑠 ) · 𝑥 ) ) = ( ( ( 1 − 𝑠 ) · 𝑥 ) + ( ( 1 − ( 1 − 𝑠 ) ) · 𝑦 ) ) ) |
46 |
|
iirev |
⊢ ( 𝑠 ∈ ( 0 [,] 1 ) → ( 1 − 𝑠 ) ∈ ( 0 [,] 1 ) ) |
47 |
46
|
adantl |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑥 ≤ 𝑦 ) ) ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 1 − 𝑠 ) ∈ ( 0 [,] 1 ) ) |
48 |
1
|
eleq1i |
⊢ ( 𝐽 ∈ Conn ↔ ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∈ Conn ) |
49 |
|
reconn |
⊢ ( 𝐴 ⊆ ℝ → ( ( ( topGen ‘ ran (,) ) ↾t 𝐴 ) ∈ Conn ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 [,] 𝑦 ) ⊆ 𝐴 ) ) |
50 |
48 49
|
syl5bb |
⊢ ( 𝐴 ⊆ ℝ → ( 𝐽 ∈ Conn ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 [,] 𝑦 ) ⊆ 𝐴 ) ) |
51 |
50
|
biimpa |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn ) → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 [,] 𝑦 ) ⊆ 𝐴 ) |
52 |
51
|
r19.21bi |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn ) ∧ 𝑥 ∈ 𝐴 ) → ∀ 𝑦 ∈ 𝐴 ( 𝑥 [,] 𝑦 ) ⊆ 𝐴 ) |
53 |
52
|
r19.21bi |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn ) ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐴 ) → ( 𝑥 [,] 𝑦 ) ⊆ 𝐴 ) |
54 |
53
|
anasss |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ( 𝑥 [,] 𝑦 ) ⊆ 𝐴 ) |
55 |
54
|
3adantr3 |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑥 ≤ 𝑦 ) ) → ( 𝑥 [,] 𝑦 ) ⊆ 𝐴 ) |
56 |
55
|
adantr |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑥 ≤ 𝑦 ) ) ∧ 𝑡 ∈ ( 0 [,] 1 ) ) → ( 𝑥 [,] 𝑦 ) ⊆ 𝐴 ) |
57 |
|
simpr |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑥 ≤ 𝑦 ) ) ∧ 𝑡 ∈ ( 0 [,] 1 ) ) → 𝑡 ∈ ( 0 [,] 1 ) ) |
58 |
24 57
|
sselid |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑥 ≤ 𝑦 ) ) ∧ 𝑡 ∈ ( 0 [,] 1 ) ) → 𝑡 ∈ ℝ ) |
59 |
|
simplll |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑥 ≤ 𝑦 ) ) ∧ 𝑡 ∈ ( 0 [,] 1 ) ) → 𝐴 ⊆ ℝ ) |
60 |
36
|
adantr |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑥 ≤ 𝑦 ) ) ∧ 𝑡 ∈ ( 0 [,] 1 ) ) → 𝑥 ∈ 𝐴 ) |
61 |
59 60
|
sseldd |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑥 ≤ 𝑦 ) ) ∧ 𝑡 ∈ ( 0 [,] 1 ) ) → 𝑥 ∈ ℝ ) |
62 |
58 61
|
remulcld |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑥 ≤ 𝑦 ) ) ∧ 𝑡 ∈ ( 0 [,] 1 ) ) → ( 𝑡 · 𝑥 ) ∈ ℝ ) |
63 |
|
1re |
⊢ 1 ∈ ℝ |
64 |
|
resubcl |
⊢ ( ( 1 ∈ ℝ ∧ 𝑡 ∈ ℝ ) → ( 1 − 𝑡 ) ∈ ℝ ) |
65 |
63 58 64
|
sylancr |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑥 ≤ 𝑦 ) ) ∧ 𝑡 ∈ ( 0 [,] 1 ) ) → ( 1 − 𝑡 ) ∈ ℝ ) |
66 |
29
|
adantr |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑥 ≤ 𝑦 ) ) ∧ 𝑡 ∈ ( 0 [,] 1 ) ) → 𝑦 ∈ 𝐴 ) |
67 |
59 66
|
sseldd |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑥 ≤ 𝑦 ) ) ∧ 𝑡 ∈ ( 0 [,] 1 ) ) → 𝑦 ∈ ℝ ) |
68 |
65 67
|
remulcld |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑥 ≤ 𝑦 ) ) ∧ 𝑡 ∈ ( 0 [,] 1 ) ) → ( ( 1 − 𝑡 ) · 𝑦 ) ∈ ℝ ) |
69 |
62 68
|
readdcld |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑥 ≤ 𝑦 ) ) ∧ 𝑡 ∈ ( 0 [,] 1 ) ) → ( ( 𝑡 · 𝑥 ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) ∈ ℝ ) |
70 |
58
|
recnd |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑥 ≤ 𝑦 ) ) ∧ 𝑡 ∈ ( 0 [,] 1 ) ) → 𝑡 ∈ ℂ ) |
71 |
|
pncan3 |
⊢ ( ( 𝑡 ∈ ℂ ∧ 1 ∈ ℂ ) → ( 𝑡 + ( 1 − 𝑡 ) ) = 1 ) |
72 |
70 33 71
|
sylancl |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑥 ≤ 𝑦 ) ) ∧ 𝑡 ∈ ( 0 [,] 1 ) ) → ( 𝑡 + ( 1 − 𝑡 ) ) = 1 ) |
73 |
72
|
oveq1d |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑥 ≤ 𝑦 ) ) ∧ 𝑡 ∈ ( 0 [,] 1 ) ) → ( ( 𝑡 + ( 1 − 𝑡 ) ) · 𝑥 ) = ( 1 · 𝑥 ) ) |
74 |
65
|
recnd |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑥 ≤ 𝑦 ) ) ∧ 𝑡 ∈ ( 0 [,] 1 ) ) → ( 1 − 𝑡 ) ∈ ℂ ) |
75 |
37
|
adantr |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑥 ≤ 𝑦 ) ) ∧ 𝑡 ∈ ( 0 [,] 1 ) ) → 𝑥 ∈ ℂ ) |
76 |
70 74 75
|
adddird |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑥 ≤ 𝑦 ) ) ∧ 𝑡 ∈ ( 0 [,] 1 ) ) → ( ( 𝑡 + ( 1 − 𝑡 ) ) · 𝑥 ) = ( ( 𝑡 · 𝑥 ) + ( ( 1 − 𝑡 ) · 𝑥 ) ) ) |
77 |
75
|
mulid2d |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑥 ≤ 𝑦 ) ) ∧ 𝑡 ∈ ( 0 [,] 1 ) ) → ( 1 · 𝑥 ) = 𝑥 ) |
78 |
73 76 77
|
3eqtr3d |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑥 ≤ 𝑦 ) ) ∧ 𝑡 ∈ ( 0 [,] 1 ) ) → ( ( 𝑡 · 𝑥 ) + ( ( 1 − 𝑡 ) · 𝑥 ) ) = 𝑥 ) |
79 |
65 61
|
remulcld |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑥 ≤ 𝑦 ) ) ∧ 𝑡 ∈ ( 0 [,] 1 ) ) → ( ( 1 − 𝑡 ) · 𝑥 ) ∈ ℝ ) |
80 |
|
elicc01 |
⊢ ( 𝑡 ∈ ( 0 [,] 1 ) ↔ ( 𝑡 ∈ ℝ ∧ 0 ≤ 𝑡 ∧ 𝑡 ≤ 1 ) ) |
81 |
57 80
|
sylib |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑥 ≤ 𝑦 ) ) ∧ 𝑡 ∈ ( 0 [,] 1 ) ) → ( 𝑡 ∈ ℝ ∧ 0 ≤ 𝑡 ∧ 𝑡 ≤ 1 ) ) |
82 |
81
|
simp3d |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑥 ≤ 𝑦 ) ) ∧ 𝑡 ∈ ( 0 [,] 1 ) ) → 𝑡 ≤ 1 ) |
83 |
|
subge0 |
⊢ ( ( 1 ∈ ℝ ∧ 𝑡 ∈ ℝ ) → ( 0 ≤ ( 1 − 𝑡 ) ↔ 𝑡 ≤ 1 ) ) |
84 |
63 58 83
|
sylancr |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑥 ≤ 𝑦 ) ) ∧ 𝑡 ∈ ( 0 [,] 1 ) ) → ( 0 ≤ ( 1 − 𝑡 ) ↔ 𝑡 ≤ 1 ) ) |
85 |
82 84
|
mpbird |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑥 ≤ 𝑦 ) ) ∧ 𝑡 ∈ ( 0 [,] 1 ) ) → 0 ≤ ( 1 − 𝑡 ) ) |
86 |
|
simplr3 |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑥 ≤ 𝑦 ) ) ∧ 𝑡 ∈ ( 0 [,] 1 ) ) → 𝑥 ≤ 𝑦 ) |
87 |
61 67 65 85 86
|
lemul2ad |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑥 ≤ 𝑦 ) ) ∧ 𝑡 ∈ ( 0 [,] 1 ) ) → ( ( 1 − 𝑡 ) · 𝑥 ) ≤ ( ( 1 − 𝑡 ) · 𝑦 ) ) |
88 |
79 68 62 87
|
leadd2dd |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑥 ≤ 𝑦 ) ) ∧ 𝑡 ∈ ( 0 [,] 1 ) ) → ( ( 𝑡 · 𝑥 ) + ( ( 1 − 𝑡 ) · 𝑥 ) ) ≤ ( ( 𝑡 · 𝑥 ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) ) |
89 |
78 88
|
eqbrtrrd |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑥 ≤ 𝑦 ) ) ∧ 𝑡 ∈ ( 0 [,] 1 ) ) → 𝑥 ≤ ( ( 𝑡 · 𝑥 ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) ) |
90 |
58 67
|
remulcld |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑥 ≤ 𝑦 ) ) ∧ 𝑡 ∈ ( 0 [,] 1 ) ) → ( 𝑡 · 𝑦 ) ∈ ℝ ) |
91 |
81
|
simp2d |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑥 ≤ 𝑦 ) ) ∧ 𝑡 ∈ ( 0 [,] 1 ) ) → 0 ≤ 𝑡 ) |
92 |
61 67 58 91 86
|
lemul2ad |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑥 ≤ 𝑦 ) ) ∧ 𝑡 ∈ ( 0 [,] 1 ) ) → ( 𝑡 · 𝑥 ) ≤ ( 𝑡 · 𝑦 ) ) |
93 |
62 90 68 92
|
leadd1dd |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑥 ≤ 𝑦 ) ) ∧ 𝑡 ∈ ( 0 [,] 1 ) ) → ( ( 𝑡 · 𝑥 ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) ≤ ( ( 𝑡 · 𝑦 ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) ) |
94 |
72
|
oveq1d |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑥 ≤ 𝑦 ) ) ∧ 𝑡 ∈ ( 0 [,] 1 ) ) → ( ( 𝑡 + ( 1 − 𝑡 ) ) · 𝑦 ) = ( 1 · 𝑦 ) ) |
95 |
30
|
adantr |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑥 ≤ 𝑦 ) ) ∧ 𝑡 ∈ ( 0 [,] 1 ) ) → 𝑦 ∈ ℂ ) |
96 |
70 74 95
|
adddird |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑥 ≤ 𝑦 ) ) ∧ 𝑡 ∈ ( 0 [,] 1 ) ) → ( ( 𝑡 + ( 1 − 𝑡 ) ) · 𝑦 ) = ( ( 𝑡 · 𝑦 ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) ) |
97 |
95
|
mulid2d |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑥 ≤ 𝑦 ) ) ∧ 𝑡 ∈ ( 0 [,] 1 ) ) → ( 1 · 𝑦 ) = 𝑦 ) |
98 |
94 96 97
|
3eqtr3d |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑥 ≤ 𝑦 ) ) ∧ 𝑡 ∈ ( 0 [,] 1 ) ) → ( ( 𝑡 · 𝑦 ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) = 𝑦 ) |
99 |
93 98
|
breqtrd |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑥 ≤ 𝑦 ) ) ∧ 𝑡 ∈ ( 0 [,] 1 ) ) → ( ( 𝑡 · 𝑥 ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) ≤ 𝑦 ) |
100 |
|
elicc2 |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( ( ( 𝑡 · 𝑥 ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) ∈ ( 𝑥 [,] 𝑦 ) ↔ ( ( ( 𝑡 · 𝑥 ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) ∈ ℝ ∧ 𝑥 ≤ ( ( 𝑡 · 𝑥 ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) ∧ ( ( 𝑡 · 𝑥 ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) ≤ 𝑦 ) ) ) |
101 |
61 67 100
|
syl2anc |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑥 ≤ 𝑦 ) ) ∧ 𝑡 ∈ ( 0 [,] 1 ) ) → ( ( ( 𝑡 · 𝑥 ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) ∈ ( 𝑥 [,] 𝑦 ) ↔ ( ( ( 𝑡 · 𝑥 ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) ∈ ℝ ∧ 𝑥 ≤ ( ( 𝑡 · 𝑥 ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) ∧ ( ( 𝑡 · 𝑥 ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) ≤ 𝑦 ) ) ) |
102 |
69 89 99 101
|
mpbir3and |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑥 ≤ 𝑦 ) ) ∧ 𝑡 ∈ ( 0 [,] 1 ) ) → ( ( 𝑡 · 𝑥 ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) ∈ ( 𝑥 [,] 𝑦 ) ) |
103 |
56 102
|
sseldd |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑥 ≤ 𝑦 ) ) ∧ 𝑡 ∈ ( 0 [,] 1 ) ) → ( ( 𝑡 · 𝑥 ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) ∈ 𝐴 ) |
104 |
103
|
ralrimiva |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑥 ≤ 𝑦 ) ) → ∀ 𝑡 ∈ ( 0 [,] 1 ) ( ( 𝑡 · 𝑥 ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) ∈ 𝐴 ) |
105 |
104
|
adantr |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑥 ≤ 𝑦 ) ) ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ∀ 𝑡 ∈ ( 0 [,] 1 ) ( ( 𝑡 · 𝑥 ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) ∈ 𝐴 ) |
106 |
|
oveq1 |
⊢ ( 𝑡 = ( 1 − 𝑠 ) → ( 𝑡 · 𝑥 ) = ( ( 1 − 𝑠 ) · 𝑥 ) ) |
107 |
|
oveq2 |
⊢ ( 𝑡 = ( 1 − 𝑠 ) → ( 1 − 𝑡 ) = ( 1 − ( 1 − 𝑠 ) ) ) |
108 |
107
|
oveq1d |
⊢ ( 𝑡 = ( 1 − 𝑠 ) → ( ( 1 − 𝑡 ) · 𝑦 ) = ( ( 1 − ( 1 − 𝑠 ) ) · 𝑦 ) ) |
109 |
106 108
|
oveq12d |
⊢ ( 𝑡 = ( 1 − 𝑠 ) → ( ( 𝑡 · 𝑥 ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) = ( ( ( 1 − 𝑠 ) · 𝑥 ) + ( ( 1 − ( 1 − 𝑠 ) ) · 𝑦 ) ) ) |
110 |
109
|
eleq1d |
⊢ ( 𝑡 = ( 1 − 𝑠 ) → ( ( ( 𝑡 · 𝑥 ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) ∈ 𝐴 ↔ ( ( ( 1 − 𝑠 ) · 𝑥 ) + ( ( 1 − ( 1 − 𝑠 ) ) · 𝑦 ) ) ∈ 𝐴 ) ) |
111 |
110
|
rspcv |
⊢ ( ( 1 − 𝑠 ) ∈ ( 0 [,] 1 ) → ( ∀ 𝑡 ∈ ( 0 [,] 1 ) ( ( 𝑡 · 𝑥 ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) ∈ 𝐴 → ( ( ( 1 − 𝑠 ) · 𝑥 ) + ( ( 1 − ( 1 − 𝑠 ) ) · 𝑦 ) ) ∈ 𝐴 ) ) |
112 |
47 105 111
|
sylc |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑥 ≤ 𝑦 ) ) ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( ( ( 1 − 𝑠 ) · 𝑥 ) + ( ( 1 − ( 1 − 𝑠 ) ) · 𝑦 ) ) ∈ 𝐴 ) |
113 |
45 112
|
eqeltrd |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑥 ≤ 𝑦 ) ) ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( ( 𝑠 · 𝑦 ) + ( ( 1 − 𝑠 ) · 𝑥 ) ) ∈ 𝐴 ) |
114 |
113
|
ralrimiva |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑥 ≤ 𝑦 ) ) → ∀ 𝑠 ∈ ( 0 [,] 1 ) ( ( 𝑠 · 𝑦 ) + ( ( 1 − 𝑠 ) · 𝑥 ) ) ∈ 𝐴 ) |
115 |
|
oveq1 |
⊢ ( 𝑠 = 𝑡 → ( 𝑠 · 𝑦 ) = ( 𝑡 · 𝑦 ) ) |
116 |
|
oveq2 |
⊢ ( 𝑠 = 𝑡 → ( 1 − 𝑠 ) = ( 1 − 𝑡 ) ) |
117 |
116
|
oveq1d |
⊢ ( 𝑠 = 𝑡 → ( ( 1 − 𝑠 ) · 𝑥 ) = ( ( 1 − 𝑡 ) · 𝑥 ) ) |
118 |
115 117
|
oveq12d |
⊢ ( 𝑠 = 𝑡 → ( ( 𝑠 · 𝑦 ) + ( ( 1 − 𝑠 ) · 𝑥 ) ) = ( ( 𝑡 · 𝑦 ) + ( ( 1 − 𝑡 ) · 𝑥 ) ) ) |
119 |
118
|
eleq1d |
⊢ ( 𝑠 = 𝑡 → ( ( ( 𝑠 · 𝑦 ) + ( ( 1 − 𝑠 ) · 𝑥 ) ) ∈ 𝐴 ↔ ( ( 𝑡 · 𝑦 ) + ( ( 1 − 𝑡 ) · 𝑥 ) ) ∈ 𝐴 ) ) |
120 |
119
|
cbvralvw |
⊢ ( ∀ 𝑠 ∈ ( 0 [,] 1 ) ( ( 𝑠 · 𝑦 ) + ( ( 1 − 𝑠 ) · 𝑥 ) ) ∈ 𝐴 ↔ ∀ 𝑡 ∈ ( 0 [,] 1 ) ( ( 𝑡 · 𝑦 ) + ( ( 1 − 𝑡 ) · 𝑥 ) ) ∈ 𝐴 ) |
121 |
114 120
|
sylib |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑥 ≤ 𝑦 ) ) → ∀ 𝑡 ∈ ( 0 [,] 1 ) ( ( 𝑡 · 𝑦 ) + ( ( 1 − 𝑡 ) · 𝑥 ) ) ∈ 𝐴 ) |
122 |
18 23 10 121 104
|
wloglei |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ∀ 𝑡 ∈ ( 0 [,] 1 ) ( ( 𝑡 · 𝑥 ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) ∈ 𝐴 ) |
123 |
122
|
r19.21bi |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) ∧ 𝑡 ∈ ( 0 [,] 1 ) ) → ( ( 𝑡 · 𝑥 ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) ∈ 𝐴 ) |
124 |
123
|
anasss |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn ) ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑡 ∈ ( 0 [,] 1 ) ) ) → ( ( 𝑡 · 𝑥 ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) ∈ 𝐴 ) |
125 |
13 124
|
sylan2b |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑡 ∈ ( 0 [,] 1 ) ) ) → ( ( 𝑡 · 𝑥 ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) ∈ 𝐴 ) |
126 |
|
eqid |
⊢ ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) = ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) |
127 |
12 125 5 126
|
cvxsconn |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn ) → ( ( TopOpen ‘ ℂfld ) ↾t 𝐴 ) ∈ SConn ) |
128 |
9 127
|
eqeltrrd |
⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐽 ∈ Conn ) → 𝐽 ∈ SConn ) |
129 |
128
|
ex |
⊢ ( 𝐴 ⊆ ℝ → ( 𝐽 ∈ Conn → 𝐽 ∈ SConn ) ) |
130 |
4 129
|
impbid2 |
⊢ ( 𝐴 ⊆ ℝ → ( 𝐽 ∈ SConn ↔ 𝐽 ∈ Conn ) ) |