Step |
Hyp |
Ref |
Expression |
1 |
|
cvxpconn.1 |
⊢ ( 𝜑 → 𝑆 ⊆ ℂ ) |
2 |
|
cvxpconn.2 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑡 ∈ ( 0 [,] 1 ) ) ) → ( ( 𝑡 · 𝑥 ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) ∈ 𝑆 ) |
3 |
|
cvxpconn.3 |
⊢ 𝐽 = ( TopOpen ‘ ℂfld ) |
4 |
|
cvxpconn.4 |
⊢ 𝐾 = ( 𝐽 ↾t 𝑆 ) |
5 |
1 2 3 4
|
cvxpconn |
⊢ ( 𝜑 → 𝐾 ∈ PConn ) |
6 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( II Cn 𝐾 ) ∧ ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) ) → 𝑓 ∈ ( II Cn 𝐾 ) ) |
7 |
|
pconntop |
⊢ ( 𝐾 ∈ PConn → 𝐾 ∈ Top ) |
8 |
5 7
|
syl |
⊢ ( 𝜑 → 𝐾 ∈ Top ) |
9 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( II Cn 𝐾 ) ∧ ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) ) → 𝐾 ∈ Top ) |
10 |
|
eqid |
⊢ ∪ 𝐾 = ∪ 𝐾 |
11 |
10
|
toptopon |
⊢ ( 𝐾 ∈ Top ↔ 𝐾 ∈ ( TopOn ‘ ∪ 𝐾 ) ) |
12 |
9 11
|
sylib |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( II Cn 𝐾 ) ∧ ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) ) → 𝐾 ∈ ( TopOn ‘ ∪ 𝐾 ) ) |
13 |
|
iiuni |
⊢ ( 0 [,] 1 ) = ∪ II |
14 |
13 10
|
cnf |
⊢ ( 𝑓 ∈ ( II Cn 𝐾 ) → 𝑓 : ( 0 [,] 1 ) ⟶ ∪ 𝐾 ) |
15 |
6 14
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( II Cn 𝐾 ) ∧ ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) ) → 𝑓 : ( 0 [,] 1 ) ⟶ ∪ 𝐾 ) |
16 |
|
0elunit |
⊢ 0 ∈ ( 0 [,] 1 ) |
17 |
|
ffvelrn |
⊢ ( ( 𝑓 : ( 0 [,] 1 ) ⟶ ∪ 𝐾 ∧ 0 ∈ ( 0 [,] 1 ) ) → ( 𝑓 ‘ 0 ) ∈ ∪ 𝐾 ) |
18 |
15 16 17
|
sylancl |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( II Cn 𝐾 ) ∧ ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) ) → ( 𝑓 ‘ 0 ) ∈ ∪ 𝐾 ) |
19 |
|
eqid |
⊢ ( ( 0 [,] 1 ) × { ( 𝑓 ‘ 0 ) } ) = ( ( 0 [,] 1 ) × { ( 𝑓 ‘ 0 ) } ) |
20 |
19
|
pcoptcl |
⊢ ( ( 𝐾 ∈ ( TopOn ‘ ∪ 𝐾 ) ∧ ( 𝑓 ‘ 0 ) ∈ ∪ 𝐾 ) → ( ( ( 0 [,] 1 ) × { ( 𝑓 ‘ 0 ) } ) ∈ ( II Cn 𝐾 ) ∧ ( ( ( 0 [,] 1 ) × { ( 𝑓 ‘ 0 ) } ) ‘ 0 ) = ( 𝑓 ‘ 0 ) ∧ ( ( ( 0 [,] 1 ) × { ( 𝑓 ‘ 0 ) } ) ‘ 1 ) = ( 𝑓 ‘ 0 ) ) ) |
21 |
12 18 20
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( II Cn 𝐾 ) ∧ ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) ) → ( ( ( 0 [,] 1 ) × { ( 𝑓 ‘ 0 ) } ) ∈ ( II Cn 𝐾 ) ∧ ( ( ( 0 [,] 1 ) × { ( 𝑓 ‘ 0 ) } ) ‘ 0 ) = ( 𝑓 ‘ 0 ) ∧ ( ( ( 0 [,] 1 ) × { ( 𝑓 ‘ 0 ) } ) ‘ 1 ) = ( 𝑓 ‘ 0 ) ) ) |
22 |
21
|
simp1d |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( II Cn 𝐾 ) ∧ ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) ) → ( ( 0 [,] 1 ) × { ( 𝑓 ‘ 0 ) } ) ∈ ( II Cn 𝐾 ) ) |
23 |
|
iitopon |
⊢ II ∈ ( TopOn ‘ ( 0 [,] 1 ) ) |
24 |
23
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( II Cn 𝐾 ) ∧ ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) ) → II ∈ ( TopOn ‘ ( 0 [,] 1 ) ) ) |
25 |
3
|
dfii3 |
⊢ II = ( 𝐽 ↾t ( 0 [,] 1 ) ) |
26 |
3
|
cnfldtopon |
⊢ 𝐽 ∈ ( TopOn ‘ ℂ ) |
27 |
26
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( II Cn 𝐾 ) ∧ ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) ) → 𝐽 ∈ ( TopOn ‘ ℂ ) ) |
28 |
|
unitssre |
⊢ ( 0 [,] 1 ) ⊆ ℝ |
29 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
30 |
28 29
|
sstri |
⊢ ( 0 [,] 1 ) ⊆ ℂ |
31 |
30
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( II Cn 𝐾 ) ∧ ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) ) → ( 0 [,] 1 ) ⊆ ℂ ) |
32 |
27 27
|
cnmpt2nd |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( II Cn 𝐾 ) ∧ ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) ) → ( 𝑧 ∈ ℂ , 𝑡 ∈ ℂ ↦ 𝑡 ) ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) ) |
33 |
25 27 31 25 27 31 32
|
cnmpt2res |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( II Cn 𝐾 ) ∧ ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) ) → ( 𝑧 ∈ ( 0 [,] 1 ) , 𝑡 ∈ ( 0 [,] 1 ) ↦ 𝑡 ) ∈ ( ( II ×t II ) Cn 𝐽 ) ) |
34 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( II Cn 𝐾 ) ∧ ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) ) → 𝑆 ⊆ ℂ ) |
35 |
|
resttopon |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ ℂ ) ∧ 𝑆 ⊆ ℂ ) → ( 𝐽 ↾t 𝑆 ) ∈ ( TopOn ‘ 𝑆 ) ) |
36 |
26 1 35
|
sylancr |
⊢ ( 𝜑 → ( 𝐽 ↾t 𝑆 ) ∈ ( TopOn ‘ 𝑆 ) ) |
37 |
4 36
|
eqeltrid |
⊢ ( 𝜑 → 𝐾 ∈ ( TopOn ‘ 𝑆 ) ) |
38 |
|
toponuni |
⊢ ( 𝐾 ∈ ( TopOn ‘ 𝑆 ) → 𝑆 = ∪ 𝐾 ) |
39 |
37 38
|
syl |
⊢ ( 𝜑 → 𝑆 = ∪ 𝐾 ) |
40 |
39
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( II Cn 𝐾 ) ∧ ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) ) → 𝑆 = ∪ 𝐾 ) |
41 |
18 40
|
eleqtrrd |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( II Cn 𝐾 ) ∧ ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) ) → ( 𝑓 ‘ 0 ) ∈ 𝑆 ) |
42 |
34 41
|
sseldd |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( II Cn 𝐾 ) ∧ ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) ) → ( 𝑓 ‘ 0 ) ∈ ℂ ) |
43 |
24 24 27 42
|
cnmpt2c |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( II Cn 𝐾 ) ∧ ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) ) → ( 𝑧 ∈ ( 0 [,] 1 ) , 𝑡 ∈ ( 0 [,] 1 ) ↦ ( 𝑓 ‘ 0 ) ) ∈ ( ( II ×t II ) Cn 𝐽 ) ) |
44 |
3
|
mulcn |
⊢ · ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) |
45 |
44
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( II Cn 𝐾 ) ∧ ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) ) → · ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) ) |
46 |
24 24 33 43 45
|
cnmpt22f |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( II Cn 𝐾 ) ∧ ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) ) → ( 𝑧 ∈ ( 0 [,] 1 ) , 𝑡 ∈ ( 0 [,] 1 ) ↦ ( 𝑡 · ( 𝑓 ‘ 0 ) ) ) ∈ ( ( II ×t II ) Cn 𝐽 ) ) |
47 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
48 |
47
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( II Cn 𝐾 ) ∧ ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) ) → 1 ∈ ℂ ) |
49 |
27 27 27 48
|
cnmpt2c |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( II Cn 𝐾 ) ∧ ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) ) → ( 𝑧 ∈ ℂ , 𝑡 ∈ ℂ ↦ 1 ) ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) ) |
50 |
3
|
subcn |
⊢ − ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) |
51 |
50
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( II Cn 𝐾 ) ∧ ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) ) → − ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) ) |
52 |
27 27 49 32 51
|
cnmpt22f |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( II Cn 𝐾 ) ∧ ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) ) → ( 𝑧 ∈ ℂ , 𝑡 ∈ ℂ ↦ ( 1 − 𝑡 ) ) ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) ) |
53 |
25 27 31 25 27 31 52
|
cnmpt2res |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( II Cn 𝐾 ) ∧ ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) ) → ( 𝑧 ∈ ( 0 [,] 1 ) , 𝑡 ∈ ( 0 [,] 1 ) ↦ ( 1 − 𝑡 ) ) ∈ ( ( II ×t II ) Cn 𝐽 ) ) |
54 |
24 24
|
cnmpt1st |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( II Cn 𝐾 ) ∧ ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) ) → ( 𝑧 ∈ ( 0 [,] 1 ) , 𝑡 ∈ ( 0 [,] 1 ) ↦ 𝑧 ) ∈ ( ( II ×t II ) Cn II ) ) |
55 |
3
|
cnfldtop |
⊢ 𝐽 ∈ Top |
56 |
|
cnrest2r |
⊢ ( 𝐽 ∈ Top → ( II Cn ( 𝐽 ↾t 𝑆 ) ) ⊆ ( II Cn 𝐽 ) ) |
57 |
55 56
|
ax-mp |
⊢ ( II Cn ( 𝐽 ↾t 𝑆 ) ) ⊆ ( II Cn 𝐽 ) |
58 |
4
|
oveq2i |
⊢ ( II Cn 𝐾 ) = ( II Cn ( 𝐽 ↾t 𝑆 ) ) |
59 |
6 58
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( II Cn 𝐾 ) ∧ ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) ) → 𝑓 ∈ ( II Cn ( 𝐽 ↾t 𝑆 ) ) ) |
60 |
57 59
|
sselid |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( II Cn 𝐾 ) ∧ ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) ) → 𝑓 ∈ ( II Cn 𝐽 ) ) |
61 |
24 24 54 60
|
cnmpt21f |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( II Cn 𝐾 ) ∧ ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) ) → ( 𝑧 ∈ ( 0 [,] 1 ) , 𝑡 ∈ ( 0 [,] 1 ) ↦ ( 𝑓 ‘ 𝑧 ) ) ∈ ( ( II ×t II ) Cn 𝐽 ) ) |
62 |
24 24 53 61 45
|
cnmpt22f |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( II Cn 𝐾 ) ∧ ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) ) → ( 𝑧 ∈ ( 0 [,] 1 ) , 𝑡 ∈ ( 0 [,] 1 ) ↦ ( ( 1 − 𝑡 ) · ( 𝑓 ‘ 𝑧 ) ) ) ∈ ( ( II ×t II ) Cn 𝐽 ) ) |
63 |
3
|
addcn |
⊢ + ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) |
64 |
63
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( II Cn 𝐾 ) ∧ ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) ) → + ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) ) |
65 |
24 24 46 62 64
|
cnmpt22f |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( II Cn 𝐾 ) ∧ ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) ) → ( 𝑧 ∈ ( 0 [,] 1 ) , 𝑡 ∈ ( 0 [,] 1 ) ↦ ( ( 𝑡 · ( 𝑓 ‘ 0 ) ) + ( ( 1 − 𝑡 ) · ( 𝑓 ‘ 𝑧 ) ) ) ) ∈ ( ( II ×t II ) Cn 𝐽 ) ) |
66 |
41
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( II Cn 𝐾 ) ∧ ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) ) ∧ ( 𝑧 ∈ ( 0 [,] 1 ) ∧ 𝑡 ∈ ( 0 [,] 1 ) ) ) → ( 𝑓 ‘ 0 ) ∈ 𝑆 ) |
67 |
15
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( II Cn 𝐾 ) ∧ ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) ) ∧ ( 𝑧 ∈ ( 0 [,] 1 ) ∧ 𝑡 ∈ ( 0 [,] 1 ) ) ) → 𝑓 : ( 0 [,] 1 ) ⟶ ∪ 𝐾 ) |
68 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( II Cn 𝐾 ) ∧ ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) ) ∧ ( 𝑧 ∈ ( 0 [,] 1 ) ∧ 𝑡 ∈ ( 0 [,] 1 ) ) ) → 𝑧 ∈ ( 0 [,] 1 ) ) |
69 |
67 68
|
ffvelrnd |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( II Cn 𝐾 ) ∧ ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) ) ∧ ( 𝑧 ∈ ( 0 [,] 1 ) ∧ 𝑡 ∈ ( 0 [,] 1 ) ) ) → ( 𝑓 ‘ 𝑧 ) ∈ ∪ 𝐾 ) |
70 |
40
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( II Cn 𝐾 ) ∧ ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) ) ∧ ( 𝑧 ∈ ( 0 [,] 1 ) ∧ 𝑡 ∈ ( 0 [,] 1 ) ) ) → 𝑆 = ∪ 𝐾 ) |
71 |
69 70
|
eleqtrrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( II Cn 𝐾 ) ∧ ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) ) ∧ ( 𝑧 ∈ ( 0 [,] 1 ) ∧ 𝑡 ∈ ( 0 [,] 1 ) ) ) → ( 𝑓 ‘ 𝑧 ) ∈ 𝑆 ) |
72 |
2
|
3exp2 |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑆 → ( 𝑦 ∈ 𝑆 → ( 𝑡 ∈ ( 0 [,] 1 ) → ( ( 𝑡 · 𝑥 ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) ∈ 𝑆 ) ) ) ) |
73 |
72
|
imp42 |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) ∧ 𝑡 ∈ ( 0 [,] 1 ) ) → ( ( 𝑡 · 𝑥 ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) ∈ 𝑆 ) |
74 |
73
|
an32s |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( ( 𝑡 · 𝑥 ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) ∈ 𝑆 ) |
75 |
74
|
ralrimivva |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 0 [,] 1 ) ) → ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( ( 𝑡 · 𝑥 ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) ∈ 𝑆 ) |
76 |
75
|
ad2ant2rl |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( II Cn 𝐾 ) ∧ ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) ) ∧ ( 𝑧 ∈ ( 0 [,] 1 ) ∧ 𝑡 ∈ ( 0 [,] 1 ) ) ) → ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( ( 𝑡 · 𝑥 ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) ∈ 𝑆 ) |
77 |
|
oveq2 |
⊢ ( 𝑥 = ( 𝑓 ‘ 0 ) → ( 𝑡 · 𝑥 ) = ( 𝑡 · ( 𝑓 ‘ 0 ) ) ) |
78 |
77
|
oveq1d |
⊢ ( 𝑥 = ( 𝑓 ‘ 0 ) → ( ( 𝑡 · 𝑥 ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) = ( ( 𝑡 · ( 𝑓 ‘ 0 ) ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) ) |
79 |
78
|
eleq1d |
⊢ ( 𝑥 = ( 𝑓 ‘ 0 ) → ( ( ( 𝑡 · 𝑥 ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) ∈ 𝑆 ↔ ( ( 𝑡 · ( 𝑓 ‘ 0 ) ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) ∈ 𝑆 ) ) |
80 |
|
oveq2 |
⊢ ( 𝑦 = ( 𝑓 ‘ 𝑧 ) → ( ( 1 − 𝑡 ) · 𝑦 ) = ( ( 1 − 𝑡 ) · ( 𝑓 ‘ 𝑧 ) ) ) |
81 |
80
|
oveq2d |
⊢ ( 𝑦 = ( 𝑓 ‘ 𝑧 ) → ( ( 𝑡 · ( 𝑓 ‘ 0 ) ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) = ( ( 𝑡 · ( 𝑓 ‘ 0 ) ) + ( ( 1 − 𝑡 ) · ( 𝑓 ‘ 𝑧 ) ) ) ) |
82 |
81
|
eleq1d |
⊢ ( 𝑦 = ( 𝑓 ‘ 𝑧 ) → ( ( ( 𝑡 · ( 𝑓 ‘ 0 ) ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) ∈ 𝑆 ↔ ( ( 𝑡 · ( 𝑓 ‘ 0 ) ) + ( ( 1 − 𝑡 ) · ( 𝑓 ‘ 𝑧 ) ) ) ∈ 𝑆 ) ) |
83 |
79 82
|
rspc2va |
⊢ ( ( ( ( 𝑓 ‘ 0 ) ∈ 𝑆 ∧ ( 𝑓 ‘ 𝑧 ) ∈ 𝑆 ) ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( ( 𝑡 · 𝑥 ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) ∈ 𝑆 ) → ( ( 𝑡 · ( 𝑓 ‘ 0 ) ) + ( ( 1 − 𝑡 ) · ( 𝑓 ‘ 𝑧 ) ) ) ∈ 𝑆 ) |
84 |
66 71 76 83
|
syl21anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( II Cn 𝐾 ) ∧ ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) ) ∧ ( 𝑧 ∈ ( 0 [,] 1 ) ∧ 𝑡 ∈ ( 0 [,] 1 ) ) ) → ( ( 𝑡 · ( 𝑓 ‘ 0 ) ) + ( ( 1 − 𝑡 ) · ( 𝑓 ‘ 𝑧 ) ) ) ∈ 𝑆 ) |
85 |
84
|
ralrimivva |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( II Cn 𝐾 ) ∧ ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) ) → ∀ 𝑧 ∈ ( 0 [,] 1 ) ∀ 𝑡 ∈ ( 0 [,] 1 ) ( ( 𝑡 · ( 𝑓 ‘ 0 ) ) + ( ( 1 − 𝑡 ) · ( 𝑓 ‘ 𝑧 ) ) ) ∈ 𝑆 ) |
86 |
|
eqid |
⊢ ( 𝑧 ∈ ( 0 [,] 1 ) , 𝑡 ∈ ( 0 [,] 1 ) ↦ ( ( 𝑡 · ( 𝑓 ‘ 0 ) ) + ( ( 1 − 𝑡 ) · ( 𝑓 ‘ 𝑧 ) ) ) ) = ( 𝑧 ∈ ( 0 [,] 1 ) , 𝑡 ∈ ( 0 [,] 1 ) ↦ ( ( 𝑡 · ( 𝑓 ‘ 0 ) ) + ( ( 1 − 𝑡 ) · ( 𝑓 ‘ 𝑧 ) ) ) ) |
87 |
86
|
fmpo |
⊢ ( ∀ 𝑧 ∈ ( 0 [,] 1 ) ∀ 𝑡 ∈ ( 0 [,] 1 ) ( ( 𝑡 · ( 𝑓 ‘ 0 ) ) + ( ( 1 − 𝑡 ) · ( 𝑓 ‘ 𝑧 ) ) ) ∈ 𝑆 ↔ ( 𝑧 ∈ ( 0 [,] 1 ) , 𝑡 ∈ ( 0 [,] 1 ) ↦ ( ( 𝑡 · ( 𝑓 ‘ 0 ) ) + ( ( 1 − 𝑡 ) · ( 𝑓 ‘ 𝑧 ) ) ) ) : ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ⟶ 𝑆 ) |
88 |
85 87
|
sylib |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( II Cn 𝐾 ) ∧ ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) ) → ( 𝑧 ∈ ( 0 [,] 1 ) , 𝑡 ∈ ( 0 [,] 1 ) ↦ ( ( 𝑡 · ( 𝑓 ‘ 0 ) ) + ( ( 1 − 𝑡 ) · ( 𝑓 ‘ 𝑧 ) ) ) ) : ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ⟶ 𝑆 ) |
89 |
88
|
frnd |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( II Cn 𝐾 ) ∧ ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) ) → ran ( 𝑧 ∈ ( 0 [,] 1 ) , 𝑡 ∈ ( 0 [,] 1 ) ↦ ( ( 𝑡 · ( 𝑓 ‘ 0 ) ) + ( ( 1 − 𝑡 ) · ( 𝑓 ‘ 𝑧 ) ) ) ) ⊆ 𝑆 ) |
90 |
|
cnrest2 |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ ℂ ) ∧ ran ( 𝑧 ∈ ( 0 [,] 1 ) , 𝑡 ∈ ( 0 [,] 1 ) ↦ ( ( 𝑡 · ( 𝑓 ‘ 0 ) ) + ( ( 1 − 𝑡 ) · ( 𝑓 ‘ 𝑧 ) ) ) ) ⊆ 𝑆 ∧ 𝑆 ⊆ ℂ ) → ( ( 𝑧 ∈ ( 0 [,] 1 ) , 𝑡 ∈ ( 0 [,] 1 ) ↦ ( ( 𝑡 · ( 𝑓 ‘ 0 ) ) + ( ( 1 − 𝑡 ) · ( 𝑓 ‘ 𝑧 ) ) ) ) ∈ ( ( II ×t II ) Cn 𝐽 ) ↔ ( 𝑧 ∈ ( 0 [,] 1 ) , 𝑡 ∈ ( 0 [,] 1 ) ↦ ( ( 𝑡 · ( 𝑓 ‘ 0 ) ) + ( ( 1 − 𝑡 ) · ( 𝑓 ‘ 𝑧 ) ) ) ) ∈ ( ( II ×t II ) Cn ( 𝐽 ↾t 𝑆 ) ) ) ) |
91 |
27 89 34 90
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( II Cn 𝐾 ) ∧ ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) ) → ( ( 𝑧 ∈ ( 0 [,] 1 ) , 𝑡 ∈ ( 0 [,] 1 ) ↦ ( ( 𝑡 · ( 𝑓 ‘ 0 ) ) + ( ( 1 − 𝑡 ) · ( 𝑓 ‘ 𝑧 ) ) ) ) ∈ ( ( II ×t II ) Cn 𝐽 ) ↔ ( 𝑧 ∈ ( 0 [,] 1 ) , 𝑡 ∈ ( 0 [,] 1 ) ↦ ( ( 𝑡 · ( 𝑓 ‘ 0 ) ) + ( ( 1 − 𝑡 ) · ( 𝑓 ‘ 𝑧 ) ) ) ) ∈ ( ( II ×t II ) Cn ( 𝐽 ↾t 𝑆 ) ) ) ) |
92 |
65 91
|
mpbid |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( II Cn 𝐾 ) ∧ ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) ) → ( 𝑧 ∈ ( 0 [,] 1 ) , 𝑡 ∈ ( 0 [,] 1 ) ↦ ( ( 𝑡 · ( 𝑓 ‘ 0 ) ) + ( ( 1 − 𝑡 ) · ( 𝑓 ‘ 𝑧 ) ) ) ) ∈ ( ( II ×t II ) Cn ( 𝐽 ↾t 𝑆 ) ) ) |
93 |
4
|
oveq2i |
⊢ ( ( II ×t II ) Cn 𝐾 ) = ( ( II ×t II ) Cn ( 𝐽 ↾t 𝑆 ) ) |
94 |
92 93
|
eleqtrrdi |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( II Cn 𝐾 ) ∧ ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) ) → ( 𝑧 ∈ ( 0 [,] 1 ) , 𝑡 ∈ ( 0 [,] 1 ) ↦ ( ( 𝑡 · ( 𝑓 ‘ 0 ) ) + ( ( 1 − 𝑡 ) · ( 𝑓 ‘ 𝑧 ) ) ) ) ∈ ( ( II ×t II ) Cn 𝐾 ) ) |
95 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( II Cn 𝐾 ) ∧ ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) ) ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → 𝑠 ∈ ( 0 [,] 1 ) ) |
96 |
|
simpr |
⊢ ( ( 𝑧 = 𝑠 ∧ 𝑡 = 0 ) → 𝑡 = 0 ) |
97 |
96
|
oveq1d |
⊢ ( ( 𝑧 = 𝑠 ∧ 𝑡 = 0 ) → ( 𝑡 · ( 𝑓 ‘ 0 ) ) = ( 0 · ( 𝑓 ‘ 0 ) ) ) |
98 |
96
|
oveq2d |
⊢ ( ( 𝑧 = 𝑠 ∧ 𝑡 = 0 ) → ( 1 − 𝑡 ) = ( 1 − 0 ) ) |
99 |
|
1m0e1 |
⊢ ( 1 − 0 ) = 1 |
100 |
98 99
|
eqtrdi |
⊢ ( ( 𝑧 = 𝑠 ∧ 𝑡 = 0 ) → ( 1 − 𝑡 ) = 1 ) |
101 |
|
simpl |
⊢ ( ( 𝑧 = 𝑠 ∧ 𝑡 = 0 ) → 𝑧 = 𝑠 ) |
102 |
101
|
fveq2d |
⊢ ( ( 𝑧 = 𝑠 ∧ 𝑡 = 0 ) → ( 𝑓 ‘ 𝑧 ) = ( 𝑓 ‘ 𝑠 ) ) |
103 |
100 102
|
oveq12d |
⊢ ( ( 𝑧 = 𝑠 ∧ 𝑡 = 0 ) → ( ( 1 − 𝑡 ) · ( 𝑓 ‘ 𝑧 ) ) = ( 1 · ( 𝑓 ‘ 𝑠 ) ) ) |
104 |
97 103
|
oveq12d |
⊢ ( ( 𝑧 = 𝑠 ∧ 𝑡 = 0 ) → ( ( 𝑡 · ( 𝑓 ‘ 0 ) ) + ( ( 1 − 𝑡 ) · ( 𝑓 ‘ 𝑧 ) ) ) = ( ( 0 · ( 𝑓 ‘ 0 ) ) + ( 1 · ( 𝑓 ‘ 𝑠 ) ) ) ) |
105 |
|
ovex |
⊢ ( ( 0 · ( 𝑓 ‘ 0 ) ) + ( 1 · ( 𝑓 ‘ 𝑠 ) ) ) ∈ V |
106 |
104 86 105
|
ovmpoa |
⊢ ( ( 𝑠 ∈ ( 0 [,] 1 ) ∧ 0 ∈ ( 0 [,] 1 ) ) → ( 𝑠 ( 𝑧 ∈ ( 0 [,] 1 ) , 𝑡 ∈ ( 0 [,] 1 ) ↦ ( ( 𝑡 · ( 𝑓 ‘ 0 ) ) + ( ( 1 − 𝑡 ) · ( 𝑓 ‘ 𝑧 ) ) ) ) 0 ) = ( ( 0 · ( 𝑓 ‘ 0 ) ) + ( 1 · ( 𝑓 ‘ 𝑠 ) ) ) ) |
107 |
95 16 106
|
sylancl |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( II Cn 𝐾 ) ∧ ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) ) ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 𝑠 ( 𝑧 ∈ ( 0 [,] 1 ) , 𝑡 ∈ ( 0 [,] 1 ) ↦ ( ( 𝑡 · ( 𝑓 ‘ 0 ) ) + ( ( 1 − 𝑡 ) · ( 𝑓 ‘ 𝑧 ) ) ) ) 0 ) = ( ( 0 · ( 𝑓 ‘ 0 ) ) + ( 1 · ( 𝑓 ‘ 𝑠 ) ) ) ) |
108 |
42
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( II Cn 𝐾 ) ∧ ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) ) ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 𝑓 ‘ 0 ) ∈ ℂ ) |
109 |
108
|
mul02d |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( II Cn 𝐾 ) ∧ ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) ) ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 0 · ( 𝑓 ‘ 0 ) ) = 0 ) |
110 |
26
|
toponunii |
⊢ ℂ = ∪ 𝐽 |
111 |
13 110
|
cnf |
⊢ ( 𝑓 ∈ ( II Cn 𝐽 ) → 𝑓 : ( 0 [,] 1 ) ⟶ ℂ ) |
112 |
60 111
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( II Cn 𝐾 ) ∧ ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) ) → 𝑓 : ( 0 [,] 1 ) ⟶ ℂ ) |
113 |
112
|
ffvelrnda |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( II Cn 𝐾 ) ∧ ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) ) ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 𝑓 ‘ 𝑠 ) ∈ ℂ ) |
114 |
113
|
mulid2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( II Cn 𝐾 ) ∧ ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) ) ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 1 · ( 𝑓 ‘ 𝑠 ) ) = ( 𝑓 ‘ 𝑠 ) ) |
115 |
109 114
|
oveq12d |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( II Cn 𝐾 ) ∧ ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) ) ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( ( 0 · ( 𝑓 ‘ 0 ) ) + ( 1 · ( 𝑓 ‘ 𝑠 ) ) ) = ( 0 + ( 𝑓 ‘ 𝑠 ) ) ) |
116 |
113
|
addid2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( II Cn 𝐾 ) ∧ ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) ) ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 0 + ( 𝑓 ‘ 𝑠 ) ) = ( 𝑓 ‘ 𝑠 ) ) |
117 |
107 115 116
|
3eqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( II Cn 𝐾 ) ∧ ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) ) ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 𝑠 ( 𝑧 ∈ ( 0 [,] 1 ) , 𝑡 ∈ ( 0 [,] 1 ) ↦ ( ( 𝑡 · ( 𝑓 ‘ 0 ) ) + ( ( 1 − 𝑡 ) · ( 𝑓 ‘ 𝑧 ) ) ) ) 0 ) = ( 𝑓 ‘ 𝑠 ) ) |
118 |
|
1elunit |
⊢ 1 ∈ ( 0 [,] 1 ) |
119 |
|
simpr |
⊢ ( ( 𝑧 = 𝑠 ∧ 𝑡 = 1 ) → 𝑡 = 1 ) |
120 |
119
|
oveq1d |
⊢ ( ( 𝑧 = 𝑠 ∧ 𝑡 = 1 ) → ( 𝑡 · ( 𝑓 ‘ 0 ) ) = ( 1 · ( 𝑓 ‘ 0 ) ) ) |
121 |
119
|
oveq2d |
⊢ ( ( 𝑧 = 𝑠 ∧ 𝑡 = 1 ) → ( 1 − 𝑡 ) = ( 1 − 1 ) ) |
122 |
|
1m1e0 |
⊢ ( 1 − 1 ) = 0 |
123 |
121 122
|
eqtrdi |
⊢ ( ( 𝑧 = 𝑠 ∧ 𝑡 = 1 ) → ( 1 − 𝑡 ) = 0 ) |
124 |
|
simpl |
⊢ ( ( 𝑧 = 𝑠 ∧ 𝑡 = 1 ) → 𝑧 = 𝑠 ) |
125 |
124
|
fveq2d |
⊢ ( ( 𝑧 = 𝑠 ∧ 𝑡 = 1 ) → ( 𝑓 ‘ 𝑧 ) = ( 𝑓 ‘ 𝑠 ) ) |
126 |
123 125
|
oveq12d |
⊢ ( ( 𝑧 = 𝑠 ∧ 𝑡 = 1 ) → ( ( 1 − 𝑡 ) · ( 𝑓 ‘ 𝑧 ) ) = ( 0 · ( 𝑓 ‘ 𝑠 ) ) ) |
127 |
120 126
|
oveq12d |
⊢ ( ( 𝑧 = 𝑠 ∧ 𝑡 = 1 ) → ( ( 𝑡 · ( 𝑓 ‘ 0 ) ) + ( ( 1 − 𝑡 ) · ( 𝑓 ‘ 𝑧 ) ) ) = ( ( 1 · ( 𝑓 ‘ 0 ) ) + ( 0 · ( 𝑓 ‘ 𝑠 ) ) ) ) |
128 |
|
ovex |
⊢ ( ( 1 · ( 𝑓 ‘ 0 ) ) + ( 0 · ( 𝑓 ‘ 𝑠 ) ) ) ∈ V |
129 |
127 86 128
|
ovmpoa |
⊢ ( ( 𝑠 ∈ ( 0 [,] 1 ) ∧ 1 ∈ ( 0 [,] 1 ) ) → ( 𝑠 ( 𝑧 ∈ ( 0 [,] 1 ) , 𝑡 ∈ ( 0 [,] 1 ) ↦ ( ( 𝑡 · ( 𝑓 ‘ 0 ) ) + ( ( 1 − 𝑡 ) · ( 𝑓 ‘ 𝑧 ) ) ) ) 1 ) = ( ( 1 · ( 𝑓 ‘ 0 ) ) + ( 0 · ( 𝑓 ‘ 𝑠 ) ) ) ) |
130 |
95 118 129
|
sylancl |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( II Cn 𝐾 ) ∧ ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) ) ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 𝑠 ( 𝑧 ∈ ( 0 [,] 1 ) , 𝑡 ∈ ( 0 [,] 1 ) ↦ ( ( 𝑡 · ( 𝑓 ‘ 0 ) ) + ( ( 1 − 𝑡 ) · ( 𝑓 ‘ 𝑧 ) ) ) ) 1 ) = ( ( 1 · ( 𝑓 ‘ 0 ) ) + ( 0 · ( 𝑓 ‘ 𝑠 ) ) ) ) |
131 |
108
|
mulid2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( II Cn 𝐾 ) ∧ ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) ) ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 1 · ( 𝑓 ‘ 0 ) ) = ( 𝑓 ‘ 0 ) ) |
132 |
113
|
mul02d |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( II Cn 𝐾 ) ∧ ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) ) ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 0 · ( 𝑓 ‘ 𝑠 ) ) = 0 ) |
133 |
131 132
|
oveq12d |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( II Cn 𝐾 ) ∧ ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) ) ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( ( 1 · ( 𝑓 ‘ 0 ) ) + ( 0 · ( 𝑓 ‘ 𝑠 ) ) ) = ( ( 𝑓 ‘ 0 ) + 0 ) ) |
134 |
108
|
addid1d |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( II Cn 𝐾 ) ∧ ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) ) ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( ( 𝑓 ‘ 0 ) + 0 ) = ( 𝑓 ‘ 0 ) ) |
135 |
|
fvex |
⊢ ( 𝑓 ‘ 0 ) ∈ V |
136 |
135
|
fvconst2 |
⊢ ( 𝑠 ∈ ( 0 [,] 1 ) → ( ( ( 0 [,] 1 ) × { ( 𝑓 ‘ 0 ) } ) ‘ 𝑠 ) = ( 𝑓 ‘ 0 ) ) |
137 |
136
|
adantl |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( II Cn 𝐾 ) ∧ ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) ) ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( ( ( 0 [,] 1 ) × { ( 𝑓 ‘ 0 ) } ) ‘ 𝑠 ) = ( 𝑓 ‘ 0 ) ) |
138 |
134 137
|
eqtr4d |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( II Cn 𝐾 ) ∧ ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) ) ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( ( 𝑓 ‘ 0 ) + 0 ) = ( ( ( 0 [,] 1 ) × { ( 𝑓 ‘ 0 ) } ) ‘ 𝑠 ) ) |
139 |
130 133 138
|
3eqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( II Cn 𝐾 ) ∧ ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) ) ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 𝑠 ( 𝑧 ∈ ( 0 [,] 1 ) , 𝑡 ∈ ( 0 [,] 1 ) ↦ ( ( 𝑡 · ( 𝑓 ‘ 0 ) ) + ( ( 1 − 𝑡 ) · ( 𝑓 ‘ 𝑧 ) ) ) ) 1 ) = ( ( ( 0 [,] 1 ) × { ( 𝑓 ‘ 0 ) } ) ‘ 𝑠 ) ) |
140 |
|
simpr |
⊢ ( ( 𝑧 = 0 ∧ 𝑡 = 𝑠 ) → 𝑡 = 𝑠 ) |
141 |
140
|
oveq1d |
⊢ ( ( 𝑧 = 0 ∧ 𝑡 = 𝑠 ) → ( 𝑡 · ( 𝑓 ‘ 0 ) ) = ( 𝑠 · ( 𝑓 ‘ 0 ) ) ) |
142 |
140
|
oveq2d |
⊢ ( ( 𝑧 = 0 ∧ 𝑡 = 𝑠 ) → ( 1 − 𝑡 ) = ( 1 − 𝑠 ) ) |
143 |
|
simpl |
⊢ ( ( 𝑧 = 0 ∧ 𝑡 = 𝑠 ) → 𝑧 = 0 ) |
144 |
143
|
fveq2d |
⊢ ( ( 𝑧 = 0 ∧ 𝑡 = 𝑠 ) → ( 𝑓 ‘ 𝑧 ) = ( 𝑓 ‘ 0 ) ) |
145 |
142 144
|
oveq12d |
⊢ ( ( 𝑧 = 0 ∧ 𝑡 = 𝑠 ) → ( ( 1 − 𝑡 ) · ( 𝑓 ‘ 𝑧 ) ) = ( ( 1 − 𝑠 ) · ( 𝑓 ‘ 0 ) ) ) |
146 |
141 145
|
oveq12d |
⊢ ( ( 𝑧 = 0 ∧ 𝑡 = 𝑠 ) → ( ( 𝑡 · ( 𝑓 ‘ 0 ) ) + ( ( 1 − 𝑡 ) · ( 𝑓 ‘ 𝑧 ) ) ) = ( ( 𝑠 · ( 𝑓 ‘ 0 ) ) + ( ( 1 − 𝑠 ) · ( 𝑓 ‘ 0 ) ) ) ) |
147 |
|
ovex |
⊢ ( ( 𝑠 · ( 𝑓 ‘ 0 ) ) + ( ( 1 − 𝑠 ) · ( 𝑓 ‘ 0 ) ) ) ∈ V |
148 |
146 86 147
|
ovmpoa |
⊢ ( ( 0 ∈ ( 0 [,] 1 ) ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 0 ( 𝑧 ∈ ( 0 [,] 1 ) , 𝑡 ∈ ( 0 [,] 1 ) ↦ ( ( 𝑡 · ( 𝑓 ‘ 0 ) ) + ( ( 1 − 𝑡 ) · ( 𝑓 ‘ 𝑧 ) ) ) ) 𝑠 ) = ( ( 𝑠 · ( 𝑓 ‘ 0 ) ) + ( ( 1 − 𝑠 ) · ( 𝑓 ‘ 0 ) ) ) ) |
149 |
16 95 148
|
sylancr |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( II Cn 𝐾 ) ∧ ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) ) ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 0 ( 𝑧 ∈ ( 0 [,] 1 ) , 𝑡 ∈ ( 0 [,] 1 ) ↦ ( ( 𝑡 · ( 𝑓 ‘ 0 ) ) + ( ( 1 − 𝑡 ) · ( 𝑓 ‘ 𝑧 ) ) ) ) 𝑠 ) = ( ( 𝑠 · ( 𝑓 ‘ 0 ) ) + ( ( 1 − 𝑠 ) · ( 𝑓 ‘ 0 ) ) ) ) |
150 |
30 95
|
sselid |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( II Cn 𝐾 ) ∧ ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) ) ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → 𝑠 ∈ ℂ ) |
151 |
|
pncan3 |
⊢ ( ( 𝑠 ∈ ℂ ∧ 1 ∈ ℂ ) → ( 𝑠 + ( 1 − 𝑠 ) ) = 1 ) |
152 |
150 47 151
|
sylancl |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( II Cn 𝐾 ) ∧ ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) ) ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 𝑠 + ( 1 − 𝑠 ) ) = 1 ) |
153 |
152
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( II Cn 𝐾 ) ∧ ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) ) ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( ( 𝑠 + ( 1 − 𝑠 ) ) · ( 𝑓 ‘ 0 ) ) = ( 1 · ( 𝑓 ‘ 0 ) ) ) |
154 |
|
subcl |
⊢ ( ( 1 ∈ ℂ ∧ 𝑠 ∈ ℂ ) → ( 1 − 𝑠 ) ∈ ℂ ) |
155 |
47 150 154
|
sylancr |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( II Cn 𝐾 ) ∧ ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) ) ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 1 − 𝑠 ) ∈ ℂ ) |
156 |
150 155 108
|
adddird |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( II Cn 𝐾 ) ∧ ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) ) ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( ( 𝑠 + ( 1 − 𝑠 ) ) · ( 𝑓 ‘ 0 ) ) = ( ( 𝑠 · ( 𝑓 ‘ 0 ) ) + ( ( 1 − 𝑠 ) · ( 𝑓 ‘ 0 ) ) ) ) |
157 |
153 156 131
|
3eqtr3d |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( II Cn 𝐾 ) ∧ ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) ) ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( ( 𝑠 · ( 𝑓 ‘ 0 ) ) + ( ( 1 − 𝑠 ) · ( 𝑓 ‘ 0 ) ) ) = ( 𝑓 ‘ 0 ) ) |
158 |
149 157
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( II Cn 𝐾 ) ∧ ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) ) ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 0 ( 𝑧 ∈ ( 0 [,] 1 ) , 𝑡 ∈ ( 0 [,] 1 ) ↦ ( ( 𝑡 · ( 𝑓 ‘ 0 ) ) + ( ( 1 − 𝑡 ) · ( 𝑓 ‘ 𝑧 ) ) ) ) 𝑠 ) = ( 𝑓 ‘ 0 ) ) |
159 |
|
simpr |
⊢ ( ( 𝑧 = 1 ∧ 𝑡 = 𝑠 ) → 𝑡 = 𝑠 ) |
160 |
159
|
oveq1d |
⊢ ( ( 𝑧 = 1 ∧ 𝑡 = 𝑠 ) → ( 𝑡 · ( 𝑓 ‘ 0 ) ) = ( 𝑠 · ( 𝑓 ‘ 0 ) ) ) |
161 |
159
|
oveq2d |
⊢ ( ( 𝑧 = 1 ∧ 𝑡 = 𝑠 ) → ( 1 − 𝑡 ) = ( 1 − 𝑠 ) ) |
162 |
|
simpl |
⊢ ( ( 𝑧 = 1 ∧ 𝑡 = 𝑠 ) → 𝑧 = 1 ) |
163 |
162
|
fveq2d |
⊢ ( ( 𝑧 = 1 ∧ 𝑡 = 𝑠 ) → ( 𝑓 ‘ 𝑧 ) = ( 𝑓 ‘ 1 ) ) |
164 |
161 163
|
oveq12d |
⊢ ( ( 𝑧 = 1 ∧ 𝑡 = 𝑠 ) → ( ( 1 − 𝑡 ) · ( 𝑓 ‘ 𝑧 ) ) = ( ( 1 − 𝑠 ) · ( 𝑓 ‘ 1 ) ) ) |
165 |
160 164
|
oveq12d |
⊢ ( ( 𝑧 = 1 ∧ 𝑡 = 𝑠 ) → ( ( 𝑡 · ( 𝑓 ‘ 0 ) ) + ( ( 1 − 𝑡 ) · ( 𝑓 ‘ 𝑧 ) ) ) = ( ( 𝑠 · ( 𝑓 ‘ 0 ) ) + ( ( 1 − 𝑠 ) · ( 𝑓 ‘ 1 ) ) ) ) |
166 |
|
ovex |
⊢ ( ( 𝑠 · ( 𝑓 ‘ 0 ) ) + ( ( 1 − 𝑠 ) · ( 𝑓 ‘ 1 ) ) ) ∈ V |
167 |
165 86 166
|
ovmpoa |
⊢ ( ( 1 ∈ ( 0 [,] 1 ) ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 1 ( 𝑧 ∈ ( 0 [,] 1 ) , 𝑡 ∈ ( 0 [,] 1 ) ↦ ( ( 𝑡 · ( 𝑓 ‘ 0 ) ) + ( ( 1 − 𝑡 ) · ( 𝑓 ‘ 𝑧 ) ) ) ) 𝑠 ) = ( ( 𝑠 · ( 𝑓 ‘ 0 ) ) + ( ( 1 − 𝑠 ) · ( 𝑓 ‘ 1 ) ) ) ) |
168 |
118 95 167
|
sylancr |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( II Cn 𝐾 ) ∧ ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) ) ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 1 ( 𝑧 ∈ ( 0 [,] 1 ) , 𝑡 ∈ ( 0 [,] 1 ) ↦ ( ( 𝑡 · ( 𝑓 ‘ 0 ) ) + ( ( 1 − 𝑡 ) · ( 𝑓 ‘ 𝑧 ) ) ) ) 𝑠 ) = ( ( 𝑠 · ( 𝑓 ‘ 0 ) ) + ( ( 1 − 𝑠 ) · ( 𝑓 ‘ 1 ) ) ) ) |
169 |
|
simplrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( II Cn 𝐾 ) ∧ ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) ) ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) |
170 |
169
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( II Cn 𝐾 ) ∧ ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) ) ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( ( 1 − 𝑠 ) · ( 𝑓 ‘ 0 ) ) = ( ( 1 − 𝑠 ) · ( 𝑓 ‘ 1 ) ) ) |
171 |
170
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( II Cn 𝐾 ) ∧ ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) ) ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( ( 𝑠 · ( 𝑓 ‘ 0 ) ) + ( ( 1 − 𝑠 ) · ( 𝑓 ‘ 0 ) ) ) = ( ( 𝑠 · ( 𝑓 ‘ 0 ) ) + ( ( 1 − 𝑠 ) · ( 𝑓 ‘ 1 ) ) ) ) |
172 |
157 171 169
|
3eqtr3d |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( II Cn 𝐾 ) ∧ ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) ) ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( ( 𝑠 · ( 𝑓 ‘ 0 ) ) + ( ( 1 − 𝑠 ) · ( 𝑓 ‘ 1 ) ) ) = ( 𝑓 ‘ 1 ) ) |
173 |
168 172
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( II Cn 𝐾 ) ∧ ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) ) ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 1 ( 𝑧 ∈ ( 0 [,] 1 ) , 𝑡 ∈ ( 0 [,] 1 ) ↦ ( ( 𝑡 · ( 𝑓 ‘ 0 ) ) + ( ( 1 − 𝑡 ) · ( 𝑓 ‘ 𝑧 ) ) ) ) 𝑠 ) = ( 𝑓 ‘ 1 ) ) |
174 |
6 22 94 117 139 158 173
|
isphtpy2d |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( II Cn 𝐾 ) ∧ ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) ) → ( 𝑧 ∈ ( 0 [,] 1 ) , 𝑡 ∈ ( 0 [,] 1 ) ↦ ( ( 𝑡 · ( 𝑓 ‘ 0 ) ) + ( ( 1 − 𝑡 ) · ( 𝑓 ‘ 𝑧 ) ) ) ) ∈ ( 𝑓 ( PHtpy ‘ 𝐾 ) ( ( 0 [,] 1 ) × { ( 𝑓 ‘ 0 ) } ) ) ) |
175 |
174
|
ne0d |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( II Cn 𝐾 ) ∧ ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) ) → ( 𝑓 ( PHtpy ‘ 𝐾 ) ( ( 0 [,] 1 ) × { ( 𝑓 ‘ 0 ) } ) ) ≠ ∅ ) |
176 |
|
isphtpc |
⊢ ( 𝑓 ( ≃ph ‘ 𝐾 ) ( ( 0 [,] 1 ) × { ( 𝑓 ‘ 0 ) } ) ↔ ( 𝑓 ∈ ( II Cn 𝐾 ) ∧ ( ( 0 [,] 1 ) × { ( 𝑓 ‘ 0 ) } ) ∈ ( II Cn 𝐾 ) ∧ ( 𝑓 ( PHtpy ‘ 𝐾 ) ( ( 0 [,] 1 ) × { ( 𝑓 ‘ 0 ) } ) ) ≠ ∅ ) ) |
177 |
6 22 175 176
|
syl3anbrc |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( II Cn 𝐾 ) ∧ ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) ) → 𝑓 ( ≃ph ‘ 𝐾 ) ( ( 0 [,] 1 ) × { ( 𝑓 ‘ 0 ) } ) ) |
178 |
177
|
expr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( II Cn 𝐾 ) ) → ( ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) → 𝑓 ( ≃ph ‘ 𝐾 ) ( ( 0 [,] 1 ) × { ( 𝑓 ‘ 0 ) } ) ) ) |
179 |
178
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑓 ∈ ( II Cn 𝐾 ) ( ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) → 𝑓 ( ≃ph ‘ 𝐾 ) ( ( 0 [,] 1 ) × { ( 𝑓 ‘ 0 ) } ) ) ) |
180 |
|
issconn |
⊢ ( 𝐾 ∈ SConn ↔ ( 𝐾 ∈ PConn ∧ ∀ 𝑓 ∈ ( II Cn 𝐾 ) ( ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) → 𝑓 ( ≃ph ‘ 𝐾 ) ( ( 0 [,] 1 ) × { ( 𝑓 ‘ 0 ) } ) ) ) ) |
181 |
5 179 180
|
sylanbrc |
⊢ ( 𝜑 → 𝐾 ∈ SConn ) |