| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cvxpconn.1 |
⊢ ( 𝜑 → 𝑆 ⊆ ℂ ) |
| 2 |
|
cvxpconn.2 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑡 ∈ ( 0 [,] 1 ) ) ) → ( ( 𝑡 · 𝑥 ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) ∈ 𝑆 ) |
| 3 |
|
cvxpconn.3 |
⊢ 𝐽 = ( TopOpen ‘ ℂfld ) |
| 4 |
|
cvxpconn.4 |
⊢ 𝐾 = ( 𝐽 ↾t 𝑆 ) |
| 5 |
1 2 3 4
|
cvxpconn |
⊢ ( 𝜑 → 𝐾 ∈ PConn ) |
| 6 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( II Cn 𝐾 ) ∧ ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) ) → 𝑓 ∈ ( II Cn 𝐾 ) ) |
| 7 |
|
pconntop |
⊢ ( 𝐾 ∈ PConn → 𝐾 ∈ Top ) |
| 8 |
5 7
|
syl |
⊢ ( 𝜑 → 𝐾 ∈ Top ) |
| 9 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( II Cn 𝐾 ) ∧ ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) ) → 𝐾 ∈ Top ) |
| 10 |
|
toptopon2 |
⊢ ( 𝐾 ∈ Top ↔ 𝐾 ∈ ( TopOn ‘ ∪ 𝐾 ) ) |
| 11 |
9 10
|
sylib |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( II Cn 𝐾 ) ∧ ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) ) → 𝐾 ∈ ( TopOn ‘ ∪ 𝐾 ) ) |
| 12 |
|
iiuni |
⊢ ( 0 [,] 1 ) = ∪ II |
| 13 |
|
eqid |
⊢ ∪ 𝐾 = ∪ 𝐾 |
| 14 |
12 13
|
cnf |
⊢ ( 𝑓 ∈ ( II Cn 𝐾 ) → 𝑓 : ( 0 [,] 1 ) ⟶ ∪ 𝐾 ) |
| 15 |
6 14
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( II Cn 𝐾 ) ∧ ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) ) → 𝑓 : ( 0 [,] 1 ) ⟶ ∪ 𝐾 ) |
| 16 |
|
0elunit |
⊢ 0 ∈ ( 0 [,] 1 ) |
| 17 |
|
ffvelcdm |
⊢ ( ( 𝑓 : ( 0 [,] 1 ) ⟶ ∪ 𝐾 ∧ 0 ∈ ( 0 [,] 1 ) ) → ( 𝑓 ‘ 0 ) ∈ ∪ 𝐾 ) |
| 18 |
15 16 17
|
sylancl |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( II Cn 𝐾 ) ∧ ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) ) → ( 𝑓 ‘ 0 ) ∈ ∪ 𝐾 ) |
| 19 |
|
eqid |
⊢ ( ( 0 [,] 1 ) × { ( 𝑓 ‘ 0 ) } ) = ( ( 0 [,] 1 ) × { ( 𝑓 ‘ 0 ) } ) |
| 20 |
19
|
pcoptcl |
⊢ ( ( 𝐾 ∈ ( TopOn ‘ ∪ 𝐾 ) ∧ ( 𝑓 ‘ 0 ) ∈ ∪ 𝐾 ) → ( ( ( 0 [,] 1 ) × { ( 𝑓 ‘ 0 ) } ) ∈ ( II Cn 𝐾 ) ∧ ( ( ( 0 [,] 1 ) × { ( 𝑓 ‘ 0 ) } ) ‘ 0 ) = ( 𝑓 ‘ 0 ) ∧ ( ( ( 0 [,] 1 ) × { ( 𝑓 ‘ 0 ) } ) ‘ 1 ) = ( 𝑓 ‘ 0 ) ) ) |
| 21 |
11 18 20
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( II Cn 𝐾 ) ∧ ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) ) → ( ( ( 0 [,] 1 ) × { ( 𝑓 ‘ 0 ) } ) ∈ ( II Cn 𝐾 ) ∧ ( ( ( 0 [,] 1 ) × { ( 𝑓 ‘ 0 ) } ) ‘ 0 ) = ( 𝑓 ‘ 0 ) ∧ ( ( ( 0 [,] 1 ) × { ( 𝑓 ‘ 0 ) } ) ‘ 1 ) = ( 𝑓 ‘ 0 ) ) ) |
| 22 |
21
|
simp1d |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( II Cn 𝐾 ) ∧ ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) ) → ( ( 0 [,] 1 ) × { ( 𝑓 ‘ 0 ) } ) ∈ ( II Cn 𝐾 ) ) |
| 23 |
|
iitopon |
⊢ II ∈ ( TopOn ‘ ( 0 [,] 1 ) ) |
| 24 |
23
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( II Cn 𝐾 ) ∧ ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) ) → II ∈ ( TopOn ‘ ( 0 [,] 1 ) ) ) |
| 25 |
3
|
dfii3 |
⊢ II = ( 𝐽 ↾t ( 0 [,] 1 ) ) |
| 26 |
3
|
cnfldtopon |
⊢ 𝐽 ∈ ( TopOn ‘ ℂ ) |
| 27 |
26
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( II Cn 𝐾 ) ∧ ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) ) → 𝐽 ∈ ( TopOn ‘ ℂ ) ) |
| 28 |
|
unitsscn |
⊢ ( 0 [,] 1 ) ⊆ ℂ |
| 29 |
28
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( II Cn 𝐾 ) ∧ ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) ) → ( 0 [,] 1 ) ⊆ ℂ ) |
| 30 |
27 27
|
cnmpt2nd |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( II Cn 𝐾 ) ∧ ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) ) → ( 𝑧 ∈ ℂ , 𝑡 ∈ ℂ ↦ 𝑡 ) ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) ) |
| 31 |
25 27 29 25 27 29 30
|
cnmpt2res |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( II Cn 𝐾 ) ∧ ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) ) → ( 𝑧 ∈ ( 0 [,] 1 ) , 𝑡 ∈ ( 0 [,] 1 ) ↦ 𝑡 ) ∈ ( ( II ×t II ) Cn 𝐽 ) ) |
| 32 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( II Cn 𝐾 ) ∧ ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) ) → 𝑆 ⊆ ℂ ) |
| 33 |
|
resttopon |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ ℂ ) ∧ 𝑆 ⊆ ℂ ) → ( 𝐽 ↾t 𝑆 ) ∈ ( TopOn ‘ 𝑆 ) ) |
| 34 |
26 1 33
|
sylancr |
⊢ ( 𝜑 → ( 𝐽 ↾t 𝑆 ) ∈ ( TopOn ‘ 𝑆 ) ) |
| 35 |
4 34
|
eqeltrid |
⊢ ( 𝜑 → 𝐾 ∈ ( TopOn ‘ 𝑆 ) ) |
| 36 |
|
toponuni |
⊢ ( 𝐾 ∈ ( TopOn ‘ 𝑆 ) → 𝑆 = ∪ 𝐾 ) |
| 37 |
35 36
|
syl |
⊢ ( 𝜑 → 𝑆 = ∪ 𝐾 ) |
| 38 |
37
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( II Cn 𝐾 ) ∧ ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) ) → 𝑆 = ∪ 𝐾 ) |
| 39 |
18 38
|
eleqtrrd |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( II Cn 𝐾 ) ∧ ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) ) → ( 𝑓 ‘ 0 ) ∈ 𝑆 ) |
| 40 |
32 39
|
sseldd |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( II Cn 𝐾 ) ∧ ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) ) → ( 𝑓 ‘ 0 ) ∈ ℂ ) |
| 41 |
24 24 27 40
|
cnmpt2c |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( II Cn 𝐾 ) ∧ ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) ) → ( 𝑧 ∈ ( 0 [,] 1 ) , 𝑡 ∈ ( 0 [,] 1 ) ↦ ( 𝑓 ‘ 0 ) ) ∈ ( ( II ×t II ) Cn 𝐽 ) ) |
| 42 |
3
|
mpomulcn |
⊢ ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) |
| 43 |
42
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( II Cn 𝐾 ) ∧ ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) ) → ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) ) |
| 44 |
|
oveq12 |
⊢ ( ( 𝑢 = 𝑡 ∧ 𝑣 = ( 𝑓 ‘ 0 ) ) → ( 𝑢 · 𝑣 ) = ( 𝑡 · ( 𝑓 ‘ 0 ) ) ) |
| 45 |
24 24 31 41 27 27 43 44
|
cnmpt22 |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( II Cn 𝐾 ) ∧ ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) ) → ( 𝑧 ∈ ( 0 [,] 1 ) , 𝑡 ∈ ( 0 [,] 1 ) ↦ ( 𝑡 · ( 𝑓 ‘ 0 ) ) ) ∈ ( ( II ×t II ) Cn 𝐽 ) ) |
| 46 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 47 |
46
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( II Cn 𝐾 ) ∧ ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) ) → 1 ∈ ℂ ) |
| 48 |
24 24 27 47
|
cnmpt2c |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( II Cn 𝐾 ) ∧ ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) ) → ( 𝑧 ∈ ( 0 [,] 1 ) , 𝑡 ∈ ( 0 [,] 1 ) ↦ 1 ) ∈ ( ( II ×t II ) Cn 𝐽 ) ) |
| 49 |
3
|
subcn |
⊢ − ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) |
| 50 |
49
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( II Cn 𝐾 ) ∧ ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) ) → − ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) ) |
| 51 |
24 24 48 31 50
|
cnmpt22f |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( II Cn 𝐾 ) ∧ ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) ) → ( 𝑧 ∈ ( 0 [,] 1 ) , 𝑡 ∈ ( 0 [,] 1 ) ↦ ( 1 − 𝑡 ) ) ∈ ( ( II ×t II ) Cn 𝐽 ) ) |
| 52 |
24 24
|
cnmpt1st |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( II Cn 𝐾 ) ∧ ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) ) → ( 𝑧 ∈ ( 0 [,] 1 ) , 𝑡 ∈ ( 0 [,] 1 ) ↦ 𝑧 ) ∈ ( ( II ×t II ) Cn II ) ) |
| 53 |
3
|
cnfldtop |
⊢ 𝐽 ∈ Top |
| 54 |
|
cnrest2r |
⊢ ( 𝐽 ∈ Top → ( II Cn ( 𝐽 ↾t 𝑆 ) ) ⊆ ( II Cn 𝐽 ) ) |
| 55 |
53 54
|
ax-mp |
⊢ ( II Cn ( 𝐽 ↾t 𝑆 ) ) ⊆ ( II Cn 𝐽 ) |
| 56 |
4
|
oveq2i |
⊢ ( II Cn 𝐾 ) = ( II Cn ( 𝐽 ↾t 𝑆 ) ) |
| 57 |
6 56
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( II Cn 𝐾 ) ∧ ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) ) → 𝑓 ∈ ( II Cn ( 𝐽 ↾t 𝑆 ) ) ) |
| 58 |
55 57
|
sselid |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( II Cn 𝐾 ) ∧ ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) ) → 𝑓 ∈ ( II Cn 𝐽 ) ) |
| 59 |
24 24 52 58
|
cnmpt21f |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( II Cn 𝐾 ) ∧ ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) ) → ( 𝑧 ∈ ( 0 [,] 1 ) , 𝑡 ∈ ( 0 [,] 1 ) ↦ ( 𝑓 ‘ 𝑧 ) ) ∈ ( ( II ×t II ) Cn 𝐽 ) ) |
| 60 |
|
oveq12 |
⊢ ( ( 𝑢 = ( 1 − 𝑡 ) ∧ 𝑣 = ( 𝑓 ‘ 𝑧 ) ) → ( 𝑢 · 𝑣 ) = ( ( 1 − 𝑡 ) · ( 𝑓 ‘ 𝑧 ) ) ) |
| 61 |
24 24 51 59 27 27 43 60
|
cnmpt22 |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( II Cn 𝐾 ) ∧ ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) ) → ( 𝑧 ∈ ( 0 [,] 1 ) , 𝑡 ∈ ( 0 [,] 1 ) ↦ ( ( 1 − 𝑡 ) · ( 𝑓 ‘ 𝑧 ) ) ) ∈ ( ( II ×t II ) Cn 𝐽 ) ) |
| 62 |
3
|
addcn |
⊢ + ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) |
| 63 |
62
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( II Cn 𝐾 ) ∧ ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) ) → + ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) ) |
| 64 |
24 24 45 61 63
|
cnmpt22f |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( II Cn 𝐾 ) ∧ ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) ) → ( 𝑧 ∈ ( 0 [,] 1 ) , 𝑡 ∈ ( 0 [,] 1 ) ↦ ( ( 𝑡 · ( 𝑓 ‘ 0 ) ) + ( ( 1 − 𝑡 ) · ( 𝑓 ‘ 𝑧 ) ) ) ) ∈ ( ( II ×t II ) Cn 𝐽 ) ) |
| 65 |
|
oveq2 |
⊢ ( 𝑥 = ( 𝑓 ‘ 0 ) → ( 𝑡 · 𝑥 ) = ( 𝑡 · ( 𝑓 ‘ 0 ) ) ) |
| 66 |
65
|
oveq1d |
⊢ ( 𝑥 = ( 𝑓 ‘ 0 ) → ( ( 𝑡 · 𝑥 ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) = ( ( 𝑡 · ( 𝑓 ‘ 0 ) ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) ) |
| 67 |
66
|
eleq1d |
⊢ ( 𝑥 = ( 𝑓 ‘ 0 ) → ( ( ( 𝑡 · 𝑥 ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) ∈ 𝑆 ↔ ( ( 𝑡 · ( 𝑓 ‘ 0 ) ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) ∈ 𝑆 ) ) |
| 68 |
|
oveq2 |
⊢ ( 𝑦 = ( 𝑓 ‘ 𝑧 ) → ( ( 1 − 𝑡 ) · 𝑦 ) = ( ( 1 − 𝑡 ) · ( 𝑓 ‘ 𝑧 ) ) ) |
| 69 |
68
|
oveq2d |
⊢ ( 𝑦 = ( 𝑓 ‘ 𝑧 ) → ( ( 𝑡 · ( 𝑓 ‘ 0 ) ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) = ( ( 𝑡 · ( 𝑓 ‘ 0 ) ) + ( ( 1 − 𝑡 ) · ( 𝑓 ‘ 𝑧 ) ) ) ) |
| 70 |
69
|
eleq1d |
⊢ ( 𝑦 = ( 𝑓 ‘ 𝑧 ) → ( ( ( 𝑡 · ( 𝑓 ‘ 0 ) ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) ∈ 𝑆 ↔ ( ( 𝑡 · ( 𝑓 ‘ 0 ) ) + ( ( 1 − 𝑡 ) · ( 𝑓 ‘ 𝑧 ) ) ) ∈ 𝑆 ) ) |
| 71 |
2
|
3exp2 |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑆 → ( 𝑦 ∈ 𝑆 → ( 𝑡 ∈ ( 0 [,] 1 ) → ( ( 𝑡 · 𝑥 ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) ∈ 𝑆 ) ) ) ) |
| 72 |
71
|
imp42 |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) ∧ 𝑡 ∈ ( 0 [,] 1 ) ) → ( ( 𝑡 · 𝑥 ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) ∈ 𝑆 ) |
| 73 |
72
|
an32s |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( ( 𝑡 · 𝑥 ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) ∈ 𝑆 ) |
| 74 |
73
|
ralrimivva |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 0 [,] 1 ) ) → ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( ( 𝑡 · 𝑥 ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) ∈ 𝑆 ) |
| 75 |
74
|
ad2ant2rl |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( II Cn 𝐾 ) ∧ ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) ) ∧ ( 𝑧 ∈ ( 0 [,] 1 ) ∧ 𝑡 ∈ ( 0 [,] 1 ) ) ) → ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( ( 𝑡 · 𝑥 ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) ∈ 𝑆 ) |
| 76 |
39
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( II Cn 𝐾 ) ∧ ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) ) ∧ ( 𝑧 ∈ ( 0 [,] 1 ) ∧ 𝑡 ∈ ( 0 [,] 1 ) ) ) → ( 𝑓 ‘ 0 ) ∈ 𝑆 ) |
| 77 |
15
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( II Cn 𝐾 ) ∧ ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) ) ∧ ( 𝑧 ∈ ( 0 [,] 1 ) ∧ 𝑡 ∈ ( 0 [,] 1 ) ) ) → 𝑓 : ( 0 [,] 1 ) ⟶ ∪ 𝐾 ) |
| 78 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( II Cn 𝐾 ) ∧ ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) ) ∧ ( 𝑧 ∈ ( 0 [,] 1 ) ∧ 𝑡 ∈ ( 0 [,] 1 ) ) ) → 𝑧 ∈ ( 0 [,] 1 ) ) |
| 79 |
77 78
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( II Cn 𝐾 ) ∧ ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) ) ∧ ( 𝑧 ∈ ( 0 [,] 1 ) ∧ 𝑡 ∈ ( 0 [,] 1 ) ) ) → ( 𝑓 ‘ 𝑧 ) ∈ ∪ 𝐾 ) |
| 80 |
38
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( II Cn 𝐾 ) ∧ ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) ) ∧ ( 𝑧 ∈ ( 0 [,] 1 ) ∧ 𝑡 ∈ ( 0 [,] 1 ) ) ) → 𝑆 = ∪ 𝐾 ) |
| 81 |
79 80
|
eleqtrrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( II Cn 𝐾 ) ∧ ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) ) ∧ ( 𝑧 ∈ ( 0 [,] 1 ) ∧ 𝑡 ∈ ( 0 [,] 1 ) ) ) → ( 𝑓 ‘ 𝑧 ) ∈ 𝑆 ) |
| 82 |
67 70 75 76 81
|
rspc2dv |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( II Cn 𝐾 ) ∧ ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) ) ∧ ( 𝑧 ∈ ( 0 [,] 1 ) ∧ 𝑡 ∈ ( 0 [,] 1 ) ) ) → ( ( 𝑡 · ( 𝑓 ‘ 0 ) ) + ( ( 1 − 𝑡 ) · ( 𝑓 ‘ 𝑧 ) ) ) ∈ 𝑆 ) |
| 83 |
82
|
ralrimivva |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( II Cn 𝐾 ) ∧ ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) ) → ∀ 𝑧 ∈ ( 0 [,] 1 ) ∀ 𝑡 ∈ ( 0 [,] 1 ) ( ( 𝑡 · ( 𝑓 ‘ 0 ) ) + ( ( 1 − 𝑡 ) · ( 𝑓 ‘ 𝑧 ) ) ) ∈ 𝑆 ) |
| 84 |
|
eqid |
⊢ ( 𝑧 ∈ ( 0 [,] 1 ) , 𝑡 ∈ ( 0 [,] 1 ) ↦ ( ( 𝑡 · ( 𝑓 ‘ 0 ) ) + ( ( 1 − 𝑡 ) · ( 𝑓 ‘ 𝑧 ) ) ) ) = ( 𝑧 ∈ ( 0 [,] 1 ) , 𝑡 ∈ ( 0 [,] 1 ) ↦ ( ( 𝑡 · ( 𝑓 ‘ 0 ) ) + ( ( 1 − 𝑡 ) · ( 𝑓 ‘ 𝑧 ) ) ) ) |
| 85 |
84
|
fmpo |
⊢ ( ∀ 𝑧 ∈ ( 0 [,] 1 ) ∀ 𝑡 ∈ ( 0 [,] 1 ) ( ( 𝑡 · ( 𝑓 ‘ 0 ) ) + ( ( 1 − 𝑡 ) · ( 𝑓 ‘ 𝑧 ) ) ) ∈ 𝑆 ↔ ( 𝑧 ∈ ( 0 [,] 1 ) , 𝑡 ∈ ( 0 [,] 1 ) ↦ ( ( 𝑡 · ( 𝑓 ‘ 0 ) ) + ( ( 1 − 𝑡 ) · ( 𝑓 ‘ 𝑧 ) ) ) ) : ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ⟶ 𝑆 ) |
| 86 |
83 85
|
sylib |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( II Cn 𝐾 ) ∧ ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) ) → ( 𝑧 ∈ ( 0 [,] 1 ) , 𝑡 ∈ ( 0 [,] 1 ) ↦ ( ( 𝑡 · ( 𝑓 ‘ 0 ) ) + ( ( 1 − 𝑡 ) · ( 𝑓 ‘ 𝑧 ) ) ) ) : ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ⟶ 𝑆 ) |
| 87 |
86
|
frnd |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( II Cn 𝐾 ) ∧ ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) ) → ran ( 𝑧 ∈ ( 0 [,] 1 ) , 𝑡 ∈ ( 0 [,] 1 ) ↦ ( ( 𝑡 · ( 𝑓 ‘ 0 ) ) + ( ( 1 − 𝑡 ) · ( 𝑓 ‘ 𝑧 ) ) ) ) ⊆ 𝑆 ) |
| 88 |
|
cnrest2 |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ ℂ ) ∧ ran ( 𝑧 ∈ ( 0 [,] 1 ) , 𝑡 ∈ ( 0 [,] 1 ) ↦ ( ( 𝑡 · ( 𝑓 ‘ 0 ) ) + ( ( 1 − 𝑡 ) · ( 𝑓 ‘ 𝑧 ) ) ) ) ⊆ 𝑆 ∧ 𝑆 ⊆ ℂ ) → ( ( 𝑧 ∈ ( 0 [,] 1 ) , 𝑡 ∈ ( 0 [,] 1 ) ↦ ( ( 𝑡 · ( 𝑓 ‘ 0 ) ) + ( ( 1 − 𝑡 ) · ( 𝑓 ‘ 𝑧 ) ) ) ) ∈ ( ( II ×t II ) Cn 𝐽 ) ↔ ( 𝑧 ∈ ( 0 [,] 1 ) , 𝑡 ∈ ( 0 [,] 1 ) ↦ ( ( 𝑡 · ( 𝑓 ‘ 0 ) ) + ( ( 1 − 𝑡 ) · ( 𝑓 ‘ 𝑧 ) ) ) ) ∈ ( ( II ×t II ) Cn ( 𝐽 ↾t 𝑆 ) ) ) ) |
| 89 |
26 87 32 88
|
mp3an2i |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( II Cn 𝐾 ) ∧ ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) ) → ( ( 𝑧 ∈ ( 0 [,] 1 ) , 𝑡 ∈ ( 0 [,] 1 ) ↦ ( ( 𝑡 · ( 𝑓 ‘ 0 ) ) + ( ( 1 − 𝑡 ) · ( 𝑓 ‘ 𝑧 ) ) ) ) ∈ ( ( II ×t II ) Cn 𝐽 ) ↔ ( 𝑧 ∈ ( 0 [,] 1 ) , 𝑡 ∈ ( 0 [,] 1 ) ↦ ( ( 𝑡 · ( 𝑓 ‘ 0 ) ) + ( ( 1 − 𝑡 ) · ( 𝑓 ‘ 𝑧 ) ) ) ) ∈ ( ( II ×t II ) Cn ( 𝐽 ↾t 𝑆 ) ) ) ) |
| 90 |
64 89
|
mpbid |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( II Cn 𝐾 ) ∧ ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) ) → ( 𝑧 ∈ ( 0 [,] 1 ) , 𝑡 ∈ ( 0 [,] 1 ) ↦ ( ( 𝑡 · ( 𝑓 ‘ 0 ) ) + ( ( 1 − 𝑡 ) · ( 𝑓 ‘ 𝑧 ) ) ) ) ∈ ( ( II ×t II ) Cn ( 𝐽 ↾t 𝑆 ) ) ) |
| 91 |
4
|
oveq2i |
⊢ ( ( II ×t II ) Cn 𝐾 ) = ( ( II ×t II ) Cn ( 𝐽 ↾t 𝑆 ) ) |
| 92 |
90 91
|
eleqtrrdi |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( II Cn 𝐾 ) ∧ ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) ) → ( 𝑧 ∈ ( 0 [,] 1 ) , 𝑡 ∈ ( 0 [,] 1 ) ↦ ( ( 𝑡 · ( 𝑓 ‘ 0 ) ) + ( ( 1 − 𝑡 ) · ( 𝑓 ‘ 𝑧 ) ) ) ) ∈ ( ( II ×t II ) Cn 𝐾 ) ) |
| 93 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( II Cn 𝐾 ) ∧ ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) ) ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → 𝑠 ∈ ( 0 [,] 1 ) ) |
| 94 |
|
simpr |
⊢ ( ( 𝑧 = 𝑠 ∧ 𝑡 = 0 ) → 𝑡 = 0 ) |
| 95 |
94
|
oveq1d |
⊢ ( ( 𝑧 = 𝑠 ∧ 𝑡 = 0 ) → ( 𝑡 · ( 𝑓 ‘ 0 ) ) = ( 0 · ( 𝑓 ‘ 0 ) ) ) |
| 96 |
94
|
oveq2d |
⊢ ( ( 𝑧 = 𝑠 ∧ 𝑡 = 0 ) → ( 1 − 𝑡 ) = ( 1 − 0 ) ) |
| 97 |
|
1m0e1 |
⊢ ( 1 − 0 ) = 1 |
| 98 |
96 97
|
eqtrdi |
⊢ ( ( 𝑧 = 𝑠 ∧ 𝑡 = 0 ) → ( 1 − 𝑡 ) = 1 ) |
| 99 |
|
simpl |
⊢ ( ( 𝑧 = 𝑠 ∧ 𝑡 = 0 ) → 𝑧 = 𝑠 ) |
| 100 |
99
|
fveq2d |
⊢ ( ( 𝑧 = 𝑠 ∧ 𝑡 = 0 ) → ( 𝑓 ‘ 𝑧 ) = ( 𝑓 ‘ 𝑠 ) ) |
| 101 |
98 100
|
oveq12d |
⊢ ( ( 𝑧 = 𝑠 ∧ 𝑡 = 0 ) → ( ( 1 − 𝑡 ) · ( 𝑓 ‘ 𝑧 ) ) = ( 1 · ( 𝑓 ‘ 𝑠 ) ) ) |
| 102 |
95 101
|
oveq12d |
⊢ ( ( 𝑧 = 𝑠 ∧ 𝑡 = 0 ) → ( ( 𝑡 · ( 𝑓 ‘ 0 ) ) + ( ( 1 − 𝑡 ) · ( 𝑓 ‘ 𝑧 ) ) ) = ( ( 0 · ( 𝑓 ‘ 0 ) ) + ( 1 · ( 𝑓 ‘ 𝑠 ) ) ) ) |
| 103 |
|
ovex |
⊢ ( ( 0 · ( 𝑓 ‘ 0 ) ) + ( 1 · ( 𝑓 ‘ 𝑠 ) ) ) ∈ V |
| 104 |
102 84 103
|
ovmpoa |
⊢ ( ( 𝑠 ∈ ( 0 [,] 1 ) ∧ 0 ∈ ( 0 [,] 1 ) ) → ( 𝑠 ( 𝑧 ∈ ( 0 [,] 1 ) , 𝑡 ∈ ( 0 [,] 1 ) ↦ ( ( 𝑡 · ( 𝑓 ‘ 0 ) ) + ( ( 1 − 𝑡 ) · ( 𝑓 ‘ 𝑧 ) ) ) ) 0 ) = ( ( 0 · ( 𝑓 ‘ 0 ) ) + ( 1 · ( 𝑓 ‘ 𝑠 ) ) ) ) |
| 105 |
93 16 104
|
sylancl |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( II Cn 𝐾 ) ∧ ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) ) ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 𝑠 ( 𝑧 ∈ ( 0 [,] 1 ) , 𝑡 ∈ ( 0 [,] 1 ) ↦ ( ( 𝑡 · ( 𝑓 ‘ 0 ) ) + ( ( 1 − 𝑡 ) · ( 𝑓 ‘ 𝑧 ) ) ) ) 0 ) = ( ( 0 · ( 𝑓 ‘ 0 ) ) + ( 1 · ( 𝑓 ‘ 𝑠 ) ) ) ) |
| 106 |
40
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( II Cn 𝐾 ) ∧ ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) ) ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 𝑓 ‘ 0 ) ∈ ℂ ) |
| 107 |
106
|
mul02d |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( II Cn 𝐾 ) ∧ ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) ) ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 0 · ( 𝑓 ‘ 0 ) ) = 0 ) |
| 108 |
26
|
toponunii |
⊢ ℂ = ∪ 𝐽 |
| 109 |
12 108
|
cnf |
⊢ ( 𝑓 ∈ ( II Cn 𝐽 ) → 𝑓 : ( 0 [,] 1 ) ⟶ ℂ ) |
| 110 |
58 109
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( II Cn 𝐾 ) ∧ ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) ) → 𝑓 : ( 0 [,] 1 ) ⟶ ℂ ) |
| 111 |
110
|
ffvelcdmda |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( II Cn 𝐾 ) ∧ ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) ) ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 𝑓 ‘ 𝑠 ) ∈ ℂ ) |
| 112 |
111
|
mullidd |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( II Cn 𝐾 ) ∧ ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) ) ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 1 · ( 𝑓 ‘ 𝑠 ) ) = ( 𝑓 ‘ 𝑠 ) ) |
| 113 |
107 112
|
oveq12d |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( II Cn 𝐾 ) ∧ ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) ) ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( ( 0 · ( 𝑓 ‘ 0 ) ) + ( 1 · ( 𝑓 ‘ 𝑠 ) ) ) = ( 0 + ( 𝑓 ‘ 𝑠 ) ) ) |
| 114 |
111
|
addlidd |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( II Cn 𝐾 ) ∧ ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) ) ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 0 + ( 𝑓 ‘ 𝑠 ) ) = ( 𝑓 ‘ 𝑠 ) ) |
| 115 |
105 113 114
|
3eqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( II Cn 𝐾 ) ∧ ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) ) ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 𝑠 ( 𝑧 ∈ ( 0 [,] 1 ) , 𝑡 ∈ ( 0 [,] 1 ) ↦ ( ( 𝑡 · ( 𝑓 ‘ 0 ) ) + ( ( 1 − 𝑡 ) · ( 𝑓 ‘ 𝑧 ) ) ) ) 0 ) = ( 𝑓 ‘ 𝑠 ) ) |
| 116 |
|
1elunit |
⊢ 1 ∈ ( 0 [,] 1 ) |
| 117 |
|
simpr |
⊢ ( ( 𝑧 = 𝑠 ∧ 𝑡 = 1 ) → 𝑡 = 1 ) |
| 118 |
117
|
oveq1d |
⊢ ( ( 𝑧 = 𝑠 ∧ 𝑡 = 1 ) → ( 𝑡 · ( 𝑓 ‘ 0 ) ) = ( 1 · ( 𝑓 ‘ 0 ) ) ) |
| 119 |
117
|
oveq2d |
⊢ ( ( 𝑧 = 𝑠 ∧ 𝑡 = 1 ) → ( 1 − 𝑡 ) = ( 1 − 1 ) ) |
| 120 |
|
1m1e0 |
⊢ ( 1 − 1 ) = 0 |
| 121 |
119 120
|
eqtrdi |
⊢ ( ( 𝑧 = 𝑠 ∧ 𝑡 = 1 ) → ( 1 − 𝑡 ) = 0 ) |
| 122 |
|
simpl |
⊢ ( ( 𝑧 = 𝑠 ∧ 𝑡 = 1 ) → 𝑧 = 𝑠 ) |
| 123 |
122
|
fveq2d |
⊢ ( ( 𝑧 = 𝑠 ∧ 𝑡 = 1 ) → ( 𝑓 ‘ 𝑧 ) = ( 𝑓 ‘ 𝑠 ) ) |
| 124 |
121 123
|
oveq12d |
⊢ ( ( 𝑧 = 𝑠 ∧ 𝑡 = 1 ) → ( ( 1 − 𝑡 ) · ( 𝑓 ‘ 𝑧 ) ) = ( 0 · ( 𝑓 ‘ 𝑠 ) ) ) |
| 125 |
118 124
|
oveq12d |
⊢ ( ( 𝑧 = 𝑠 ∧ 𝑡 = 1 ) → ( ( 𝑡 · ( 𝑓 ‘ 0 ) ) + ( ( 1 − 𝑡 ) · ( 𝑓 ‘ 𝑧 ) ) ) = ( ( 1 · ( 𝑓 ‘ 0 ) ) + ( 0 · ( 𝑓 ‘ 𝑠 ) ) ) ) |
| 126 |
|
ovex |
⊢ ( ( 1 · ( 𝑓 ‘ 0 ) ) + ( 0 · ( 𝑓 ‘ 𝑠 ) ) ) ∈ V |
| 127 |
125 84 126
|
ovmpoa |
⊢ ( ( 𝑠 ∈ ( 0 [,] 1 ) ∧ 1 ∈ ( 0 [,] 1 ) ) → ( 𝑠 ( 𝑧 ∈ ( 0 [,] 1 ) , 𝑡 ∈ ( 0 [,] 1 ) ↦ ( ( 𝑡 · ( 𝑓 ‘ 0 ) ) + ( ( 1 − 𝑡 ) · ( 𝑓 ‘ 𝑧 ) ) ) ) 1 ) = ( ( 1 · ( 𝑓 ‘ 0 ) ) + ( 0 · ( 𝑓 ‘ 𝑠 ) ) ) ) |
| 128 |
93 116 127
|
sylancl |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( II Cn 𝐾 ) ∧ ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) ) ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 𝑠 ( 𝑧 ∈ ( 0 [,] 1 ) , 𝑡 ∈ ( 0 [,] 1 ) ↦ ( ( 𝑡 · ( 𝑓 ‘ 0 ) ) + ( ( 1 − 𝑡 ) · ( 𝑓 ‘ 𝑧 ) ) ) ) 1 ) = ( ( 1 · ( 𝑓 ‘ 0 ) ) + ( 0 · ( 𝑓 ‘ 𝑠 ) ) ) ) |
| 129 |
106
|
mullidd |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( II Cn 𝐾 ) ∧ ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) ) ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 1 · ( 𝑓 ‘ 0 ) ) = ( 𝑓 ‘ 0 ) ) |
| 130 |
111
|
mul02d |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( II Cn 𝐾 ) ∧ ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) ) ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 0 · ( 𝑓 ‘ 𝑠 ) ) = 0 ) |
| 131 |
129 130
|
oveq12d |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( II Cn 𝐾 ) ∧ ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) ) ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( ( 1 · ( 𝑓 ‘ 0 ) ) + ( 0 · ( 𝑓 ‘ 𝑠 ) ) ) = ( ( 𝑓 ‘ 0 ) + 0 ) ) |
| 132 |
106
|
addridd |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( II Cn 𝐾 ) ∧ ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) ) ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( ( 𝑓 ‘ 0 ) + 0 ) = ( 𝑓 ‘ 0 ) ) |
| 133 |
|
fvex |
⊢ ( 𝑓 ‘ 0 ) ∈ V |
| 134 |
133
|
fvconst2 |
⊢ ( 𝑠 ∈ ( 0 [,] 1 ) → ( ( ( 0 [,] 1 ) × { ( 𝑓 ‘ 0 ) } ) ‘ 𝑠 ) = ( 𝑓 ‘ 0 ) ) |
| 135 |
134
|
adantl |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( II Cn 𝐾 ) ∧ ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) ) ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( ( ( 0 [,] 1 ) × { ( 𝑓 ‘ 0 ) } ) ‘ 𝑠 ) = ( 𝑓 ‘ 0 ) ) |
| 136 |
132 135
|
eqtr4d |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( II Cn 𝐾 ) ∧ ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) ) ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( ( 𝑓 ‘ 0 ) + 0 ) = ( ( ( 0 [,] 1 ) × { ( 𝑓 ‘ 0 ) } ) ‘ 𝑠 ) ) |
| 137 |
128 131 136
|
3eqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( II Cn 𝐾 ) ∧ ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) ) ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 𝑠 ( 𝑧 ∈ ( 0 [,] 1 ) , 𝑡 ∈ ( 0 [,] 1 ) ↦ ( ( 𝑡 · ( 𝑓 ‘ 0 ) ) + ( ( 1 − 𝑡 ) · ( 𝑓 ‘ 𝑧 ) ) ) ) 1 ) = ( ( ( 0 [,] 1 ) × { ( 𝑓 ‘ 0 ) } ) ‘ 𝑠 ) ) |
| 138 |
|
simpr |
⊢ ( ( 𝑧 = 0 ∧ 𝑡 = 𝑠 ) → 𝑡 = 𝑠 ) |
| 139 |
138
|
oveq1d |
⊢ ( ( 𝑧 = 0 ∧ 𝑡 = 𝑠 ) → ( 𝑡 · ( 𝑓 ‘ 0 ) ) = ( 𝑠 · ( 𝑓 ‘ 0 ) ) ) |
| 140 |
138
|
oveq2d |
⊢ ( ( 𝑧 = 0 ∧ 𝑡 = 𝑠 ) → ( 1 − 𝑡 ) = ( 1 − 𝑠 ) ) |
| 141 |
|
simpl |
⊢ ( ( 𝑧 = 0 ∧ 𝑡 = 𝑠 ) → 𝑧 = 0 ) |
| 142 |
141
|
fveq2d |
⊢ ( ( 𝑧 = 0 ∧ 𝑡 = 𝑠 ) → ( 𝑓 ‘ 𝑧 ) = ( 𝑓 ‘ 0 ) ) |
| 143 |
140 142
|
oveq12d |
⊢ ( ( 𝑧 = 0 ∧ 𝑡 = 𝑠 ) → ( ( 1 − 𝑡 ) · ( 𝑓 ‘ 𝑧 ) ) = ( ( 1 − 𝑠 ) · ( 𝑓 ‘ 0 ) ) ) |
| 144 |
139 143
|
oveq12d |
⊢ ( ( 𝑧 = 0 ∧ 𝑡 = 𝑠 ) → ( ( 𝑡 · ( 𝑓 ‘ 0 ) ) + ( ( 1 − 𝑡 ) · ( 𝑓 ‘ 𝑧 ) ) ) = ( ( 𝑠 · ( 𝑓 ‘ 0 ) ) + ( ( 1 − 𝑠 ) · ( 𝑓 ‘ 0 ) ) ) ) |
| 145 |
|
ovex |
⊢ ( ( 𝑠 · ( 𝑓 ‘ 0 ) ) + ( ( 1 − 𝑠 ) · ( 𝑓 ‘ 0 ) ) ) ∈ V |
| 146 |
144 84 145
|
ovmpoa |
⊢ ( ( 0 ∈ ( 0 [,] 1 ) ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 0 ( 𝑧 ∈ ( 0 [,] 1 ) , 𝑡 ∈ ( 0 [,] 1 ) ↦ ( ( 𝑡 · ( 𝑓 ‘ 0 ) ) + ( ( 1 − 𝑡 ) · ( 𝑓 ‘ 𝑧 ) ) ) ) 𝑠 ) = ( ( 𝑠 · ( 𝑓 ‘ 0 ) ) + ( ( 1 − 𝑠 ) · ( 𝑓 ‘ 0 ) ) ) ) |
| 147 |
16 93 146
|
sylancr |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( II Cn 𝐾 ) ∧ ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) ) ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 0 ( 𝑧 ∈ ( 0 [,] 1 ) , 𝑡 ∈ ( 0 [,] 1 ) ↦ ( ( 𝑡 · ( 𝑓 ‘ 0 ) ) + ( ( 1 − 𝑡 ) · ( 𝑓 ‘ 𝑧 ) ) ) ) 𝑠 ) = ( ( 𝑠 · ( 𝑓 ‘ 0 ) ) + ( ( 1 − 𝑠 ) · ( 𝑓 ‘ 0 ) ) ) ) |
| 148 |
28 93
|
sselid |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( II Cn 𝐾 ) ∧ ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) ) ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → 𝑠 ∈ ℂ ) |
| 149 |
|
pncan3 |
⊢ ( ( 𝑠 ∈ ℂ ∧ 1 ∈ ℂ ) → ( 𝑠 + ( 1 − 𝑠 ) ) = 1 ) |
| 150 |
148 46 149
|
sylancl |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( II Cn 𝐾 ) ∧ ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) ) ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 𝑠 + ( 1 − 𝑠 ) ) = 1 ) |
| 151 |
150
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( II Cn 𝐾 ) ∧ ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) ) ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( ( 𝑠 + ( 1 − 𝑠 ) ) · ( 𝑓 ‘ 0 ) ) = ( 1 · ( 𝑓 ‘ 0 ) ) ) |
| 152 |
|
subcl |
⊢ ( ( 1 ∈ ℂ ∧ 𝑠 ∈ ℂ ) → ( 1 − 𝑠 ) ∈ ℂ ) |
| 153 |
46 148 152
|
sylancr |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( II Cn 𝐾 ) ∧ ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) ) ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 1 − 𝑠 ) ∈ ℂ ) |
| 154 |
148 153 106
|
adddird |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( II Cn 𝐾 ) ∧ ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) ) ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( ( 𝑠 + ( 1 − 𝑠 ) ) · ( 𝑓 ‘ 0 ) ) = ( ( 𝑠 · ( 𝑓 ‘ 0 ) ) + ( ( 1 − 𝑠 ) · ( 𝑓 ‘ 0 ) ) ) ) |
| 155 |
151 154 129
|
3eqtr3d |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( II Cn 𝐾 ) ∧ ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) ) ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( ( 𝑠 · ( 𝑓 ‘ 0 ) ) + ( ( 1 − 𝑠 ) · ( 𝑓 ‘ 0 ) ) ) = ( 𝑓 ‘ 0 ) ) |
| 156 |
147 155
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( II Cn 𝐾 ) ∧ ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) ) ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 0 ( 𝑧 ∈ ( 0 [,] 1 ) , 𝑡 ∈ ( 0 [,] 1 ) ↦ ( ( 𝑡 · ( 𝑓 ‘ 0 ) ) + ( ( 1 − 𝑡 ) · ( 𝑓 ‘ 𝑧 ) ) ) ) 𝑠 ) = ( 𝑓 ‘ 0 ) ) |
| 157 |
|
simpr |
⊢ ( ( 𝑧 = 1 ∧ 𝑡 = 𝑠 ) → 𝑡 = 𝑠 ) |
| 158 |
157
|
oveq1d |
⊢ ( ( 𝑧 = 1 ∧ 𝑡 = 𝑠 ) → ( 𝑡 · ( 𝑓 ‘ 0 ) ) = ( 𝑠 · ( 𝑓 ‘ 0 ) ) ) |
| 159 |
157
|
oveq2d |
⊢ ( ( 𝑧 = 1 ∧ 𝑡 = 𝑠 ) → ( 1 − 𝑡 ) = ( 1 − 𝑠 ) ) |
| 160 |
|
simpl |
⊢ ( ( 𝑧 = 1 ∧ 𝑡 = 𝑠 ) → 𝑧 = 1 ) |
| 161 |
160
|
fveq2d |
⊢ ( ( 𝑧 = 1 ∧ 𝑡 = 𝑠 ) → ( 𝑓 ‘ 𝑧 ) = ( 𝑓 ‘ 1 ) ) |
| 162 |
159 161
|
oveq12d |
⊢ ( ( 𝑧 = 1 ∧ 𝑡 = 𝑠 ) → ( ( 1 − 𝑡 ) · ( 𝑓 ‘ 𝑧 ) ) = ( ( 1 − 𝑠 ) · ( 𝑓 ‘ 1 ) ) ) |
| 163 |
158 162
|
oveq12d |
⊢ ( ( 𝑧 = 1 ∧ 𝑡 = 𝑠 ) → ( ( 𝑡 · ( 𝑓 ‘ 0 ) ) + ( ( 1 − 𝑡 ) · ( 𝑓 ‘ 𝑧 ) ) ) = ( ( 𝑠 · ( 𝑓 ‘ 0 ) ) + ( ( 1 − 𝑠 ) · ( 𝑓 ‘ 1 ) ) ) ) |
| 164 |
|
ovex |
⊢ ( ( 𝑠 · ( 𝑓 ‘ 0 ) ) + ( ( 1 − 𝑠 ) · ( 𝑓 ‘ 1 ) ) ) ∈ V |
| 165 |
163 84 164
|
ovmpoa |
⊢ ( ( 1 ∈ ( 0 [,] 1 ) ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 1 ( 𝑧 ∈ ( 0 [,] 1 ) , 𝑡 ∈ ( 0 [,] 1 ) ↦ ( ( 𝑡 · ( 𝑓 ‘ 0 ) ) + ( ( 1 − 𝑡 ) · ( 𝑓 ‘ 𝑧 ) ) ) ) 𝑠 ) = ( ( 𝑠 · ( 𝑓 ‘ 0 ) ) + ( ( 1 − 𝑠 ) · ( 𝑓 ‘ 1 ) ) ) ) |
| 166 |
116 93 165
|
sylancr |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( II Cn 𝐾 ) ∧ ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) ) ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 1 ( 𝑧 ∈ ( 0 [,] 1 ) , 𝑡 ∈ ( 0 [,] 1 ) ↦ ( ( 𝑡 · ( 𝑓 ‘ 0 ) ) + ( ( 1 − 𝑡 ) · ( 𝑓 ‘ 𝑧 ) ) ) ) 𝑠 ) = ( ( 𝑠 · ( 𝑓 ‘ 0 ) ) + ( ( 1 − 𝑠 ) · ( 𝑓 ‘ 1 ) ) ) ) |
| 167 |
|
simplrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( II Cn 𝐾 ) ∧ ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) ) ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) |
| 168 |
167
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( II Cn 𝐾 ) ∧ ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) ) ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( ( 1 − 𝑠 ) · ( 𝑓 ‘ 0 ) ) = ( ( 1 − 𝑠 ) · ( 𝑓 ‘ 1 ) ) ) |
| 169 |
168
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( II Cn 𝐾 ) ∧ ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) ) ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( ( 𝑠 · ( 𝑓 ‘ 0 ) ) + ( ( 1 − 𝑠 ) · ( 𝑓 ‘ 0 ) ) ) = ( ( 𝑠 · ( 𝑓 ‘ 0 ) ) + ( ( 1 − 𝑠 ) · ( 𝑓 ‘ 1 ) ) ) ) |
| 170 |
155 169 167
|
3eqtr3d |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( II Cn 𝐾 ) ∧ ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) ) ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( ( 𝑠 · ( 𝑓 ‘ 0 ) ) + ( ( 1 − 𝑠 ) · ( 𝑓 ‘ 1 ) ) ) = ( 𝑓 ‘ 1 ) ) |
| 171 |
166 170
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( II Cn 𝐾 ) ∧ ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) ) ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 1 ( 𝑧 ∈ ( 0 [,] 1 ) , 𝑡 ∈ ( 0 [,] 1 ) ↦ ( ( 𝑡 · ( 𝑓 ‘ 0 ) ) + ( ( 1 − 𝑡 ) · ( 𝑓 ‘ 𝑧 ) ) ) ) 𝑠 ) = ( 𝑓 ‘ 1 ) ) |
| 172 |
6 22 92 115 137 156 171
|
isphtpy2d |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( II Cn 𝐾 ) ∧ ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) ) → ( 𝑧 ∈ ( 0 [,] 1 ) , 𝑡 ∈ ( 0 [,] 1 ) ↦ ( ( 𝑡 · ( 𝑓 ‘ 0 ) ) + ( ( 1 − 𝑡 ) · ( 𝑓 ‘ 𝑧 ) ) ) ) ∈ ( 𝑓 ( PHtpy ‘ 𝐾 ) ( ( 0 [,] 1 ) × { ( 𝑓 ‘ 0 ) } ) ) ) |
| 173 |
172
|
ne0d |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( II Cn 𝐾 ) ∧ ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) ) → ( 𝑓 ( PHtpy ‘ 𝐾 ) ( ( 0 [,] 1 ) × { ( 𝑓 ‘ 0 ) } ) ) ≠ ∅ ) |
| 174 |
|
isphtpc |
⊢ ( 𝑓 ( ≃ph ‘ 𝐾 ) ( ( 0 [,] 1 ) × { ( 𝑓 ‘ 0 ) } ) ↔ ( 𝑓 ∈ ( II Cn 𝐾 ) ∧ ( ( 0 [,] 1 ) × { ( 𝑓 ‘ 0 ) } ) ∈ ( II Cn 𝐾 ) ∧ ( 𝑓 ( PHtpy ‘ 𝐾 ) ( ( 0 [,] 1 ) × { ( 𝑓 ‘ 0 ) } ) ) ≠ ∅ ) ) |
| 175 |
6 22 173 174
|
syl3anbrc |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( II Cn 𝐾 ) ∧ ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) ) ) → 𝑓 ( ≃ph ‘ 𝐾 ) ( ( 0 [,] 1 ) × { ( 𝑓 ‘ 0 ) } ) ) |
| 176 |
175
|
expr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( II Cn 𝐾 ) ) → ( ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) → 𝑓 ( ≃ph ‘ 𝐾 ) ( ( 0 [,] 1 ) × { ( 𝑓 ‘ 0 ) } ) ) ) |
| 177 |
176
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑓 ∈ ( II Cn 𝐾 ) ( ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) → 𝑓 ( ≃ph ‘ 𝐾 ) ( ( 0 [,] 1 ) × { ( 𝑓 ‘ 0 ) } ) ) ) |
| 178 |
|
issconn |
⊢ ( 𝐾 ∈ SConn ↔ ( 𝐾 ∈ PConn ∧ ∀ 𝑓 ∈ ( II Cn 𝐾 ) ( ( 𝑓 ‘ 0 ) = ( 𝑓 ‘ 1 ) → 𝑓 ( ≃ph ‘ 𝐾 ) ( ( 0 [,] 1 ) × { ( 𝑓 ‘ 0 ) } ) ) ) ) |
| 179 |
5 177 178
|
sylanbrc |
⊢ ( 𝜑 → 𝐾 ∈ SConn ) |