Metamath Proof Explorer


Theorem cvxsconn

Description: A convex subset of the complex numbers is simply connected. (Contributed by Mario Carneiro, 12-Feb-2015)

Ref Expression
Hypotheses cvxpconn.1 φ S
cvxpconn.2 φ x S y S t 0 1 t x + 1 t y S
cvxpconn.3 J = TopOpen fld
cvxpconn.4 K = J 𝑡 S
Assertion cvxsconn φ K SConn

Proof

Step Hyp Ref Expression
1 cvxpconn.1 φ S
2 cvxpconn.2 φ x S y S t 0 1 t x + 1 t y S
3 cvxpconn.3 J = TopOpen fld
4 cvxpconn.4 K = J 𝑡 S
5 1 2 3 4 cvxpconn φ K PConn
6 simprl φ f II Cn K f 0 = f 1 f II Cn K
7 pconntop K PConn K Top
8 5 7 syl φ K Top
9 8 adantr φ f II Cn K f 0 = f 1 K Top
10 eqid K = K
11 10 toptopon K Top K TopOn K
12 9 11 sylib φ f II Cn K f 0 = f 1 K TopOn K
13 iiuni 0 1 = II
14 13 10 cnf f II Cn K f : 0 1 K
15 6 14 syl φ f II Cn K f 0 = f 1 f : 0 1 K
16 0elunit 0 0 1
17 ffvelrn f : 0 1 K 0 0 1 f 0 K
18 15 16 17 sylancl φ f II Cn K f 0 = f 1 f 0 K
19 eqid 0 1 × f 0 = 0 1 × f 0
20 19 pcoptcl K TopOn K f 0 K 0 1 × f 0 II Cn K 0 1 × f 0 0 = f 0 0 1 × f 0 1 = f 0
21 12 18 20 syl2anc φ f II Cn K f 0 = f 1 0 1 × f 0 II Cn K 0 1 × f 0 0 = f 0 0 1 × f 0 1 = f 0
22 21 simp1d φ f II Cn K f 0 = f 1 0 1 × f 0 II Cn K
23 iitopon II TopOn 0 1
24 23 a1i φ f II Cn K f 0 = f 1 II TopOn 0 1
25 3 dfii3 II = J 𝑡 0 1
26 3 cnfldtopon J TopOn
27 26 a1i φ f II Cn K f 0 = f 1 J TopOn
28 unitssre 0 1
29 ax-resscn
30 28 29 sstri 0 1
31 30 a1i φ f II Cn K f 0 = f 1 0 1
32 27 27 cnmpt2nd φ f II Cn K f 0 = f 1 z , t t J × t J Cn J
33 25 27 31 25 27 31 32 cnmpt2res φ f II Cn K f 0 = f 1 z 0 1 , t 0 1 t II × t II Cn J
34 1 adantr φ f II Cn K f 0 = f 1 S
35 resttopon J TopOn S J 𝑡 S TopOn S
36 26 1 35 sylancr φ J 𝑡 S TopOn S
37 4 36 eqeltrid φ K TopOn S
38 toponuni K TopOn S S = K
39 37 38 syl φ S = K
40 39 adantr φ f II Cn K f 0 = f 1 S = K
41 18 40 eleqtrrd φ f II Cn K f 0 = f 1 f 0 S
42 34 41 sseldd φ f II Cn K f 0 = f 1 f 0
43 24 24 27 42 cnmpt2c φ f II Cn K f 0 = f 1 z 0 1 , t 0 1 f 0 II × t II Cn J
44 3 mulcn × J × t J Cn J
45 44 a1i φ f II Cn K f 0 = f 1 × J × t J Cn J
46 24 24 33 43 45 cnmpt22f φ f II Cn K f 0 = f 1 z 0 1 , t 0 1 t f 0 II × t II Cn J
47 ax-1cn 1
48 47 a1i φ f II Cn K f 0 = f 1 1
49 27 27 27 48 cnmpt2c φ f II Cn K f 0 = f 1 z , t 1 J × t J Cn J
50 3 subcn J × t J Cn J
51 50 a1i φ f II Cn K f 0 = f 1 J × t J Cn J
52 27 27 49 32 51 cnmpt22f φ f II Cn K f 0 = f 1 z , t 1 t J × t J Cn J
53 25 27 31 25 27 31 52 cnmpt2res φ f II Cn K f 0 = f 1 z 0 1 , t 0 1 1 t II × t II Cn J
54 24 24 cnmpt1st φ f II Cn K f 0 = f 1 z 0 1 , t 0 1 z II × t II Cn II
55 3 cnfldtop J Top
56 cnrest2r J Top II Cn J 𝑡 S II Cn J
57 55 56 ax-mp II Cn J 𝑡 S II Cn J
58 4 oveq2i II Cn K = II Cn J 𝑡 S
59 6 58 eleqtrdi φ f II Cn K f 0 = f 1 f II Cn J 𝑡 S
60 57 59 sselid φ f II Cn K f 0 = f 1 f II Cn J
61 24 24 54 60 cnmpt21f φ f II Cn K f 0 = f 1 z 0 1 , t 0 1 f z II × t II Cn J
62 24 24 53 61 45 cnmpt22f φ f II Cn K f 0 = f 1 z 0 1 , t 0 1 1 t f z II × t II Cn J
63 3 addcn + J × t J Cn J
64 63 a1i φ f II Cn K f 0 = f 1 + J × t J Cn J
65 24 24 46 62 64 cnmpt22f φ f II Cn K f 0 = f 1 z 0 1 , t 0 1 t f 0 + 1 t f z II × t II Cn J
66 41 adantr φ f II Cn K f 0 = f 1 z 0 1 t 0 1 f 0 S
67 15 adantr φ f II Cn K f 0 = f 1 z 0 1 t 0 1 f : 0 1 K
68 simprl φ f II Cn K f 0 = f 1 z 0 1 t 0 1 z 0 1
69 67 68 ffvelrnd φ f II Cn K f 0 = f 1 z 0 1 t 0 1 f z K
70 40 adantr φ f II Cn K f 0 = f 1 z 0 1 t 0 1 S = K
71 69 70 eleqtrrd φ f II Cn K f 0 = f 1 z 0 1 t 0 1 f z S
72 2 3exp2 φ x S y S t 0 1 t x + 1 t y S
73 72 imp42 φ x S y S t 0 1 t x + 1 t y S
74 73 an32s φ t 0 1 x S y S t x + 1 t y S
75 74 ralrimivva φ t 0 1 x S y S t x + 1 t y S
76 75 ad2ant2rl φ f II Cn K f 0 = f 1 z 0 1 t 0 1 x S y S t x + 1 t y S
77 oveq2 x = f 0 t x = t f 0
78 77 oveq1d x = f 0 t x + 1 t y = t f 0 + 1 t y
79 78 eleq1d x = f 0 t x + 1 t y S t f 0 + 1 t y S
80 oveq2 y = f z 1 t y = 1 t f z
81 80 oveq2d y = f z t f 0 + 1 t y = t f 0 + 1 t f z
82 81 eleq1d y = f z t f 0 + 1 t y S t f 0 + 1 t f z S
83 79 82 rspc2va f 0 S f z S x S y S t x + 1 t y S t f 0 + 1 t f z S
84 66 71 76 83 syl21anc φ f II Cn K f 0 = f 1 z 0 1 t 0 1 t f 0 + 1 t f z S
85 84 ralrimivva φ f II Cn K f 0 = f 1 z 0 1 t 0 1 t f 0 + 1 t f z S
86 eqid z 0 1 , t 0 1 t f 0 + 1 t f z = z 0 1 , t 0 1 t f 0 + 1 t f z
87 86 fmpo z 0 1 t 0 1 t f 0 + 1 t f z S z 0 1 , t 0 1 t f 0 + 1 t f z : 0 1 × 0 1 S
88 85 87 sylib φ f II Cn K f 0 = f 1 z 0 1 , t 0 1 t f 0 + 1 t f z : 0 1 × 0 1 S
89 88 frnd φ f II Cn K f 0 = f 1 ran z 0 1 , t 0 1 t f 0 + 1 t f z S
90 cnrest2 J TopOn ran z 0 1 , t 0 1 t f 0 + 1 t f z S S z 0 1 , t 0 1 t f 0 + 1 t f z II × t II Cn J z 0 1 , t 0 1 t f 0 + 1 t f z II × t II Cn J 𝑡 S
91 27 89 34 90 syl3anc φ f II Cn K f 0 = f 1 z 0 1 , t 0 1 t f 0 + 1 t f z II × t II Cn J z 0 1 , t 0 1 t f 0 + 1 t f z II × t II Cn J 𝑡 S
92 65 91 mpbid φ f II Cn K f 0 = f 1 z 0 1 , t 0 1 t f 0 + 1 t f z II × t II Cn J 𝑡 S
93 4 oveq2i II × t II Cn K = II × t II Cn J 𝑡 S
94 92 93 eleqtrrdi φ f II Cn K f 0 = f 1 z 0 1 , t 0 1 t f 0 + 1 t f z II × t II Cn K
95 simpr φ f II Cn K f 0 = f 1 s 0 1 s 0 1
96 simpr z = s t = 0 t = 0
97 96 oveq1d z = s t = 0 t f 0 = 0 f 0
98 96 oveq2d z = s t = 0 1 t = 1 0
99 1m0e1 1 0 = 1
100 98 99 eqtrdi z = s t = 0 1 t = 1
101 simpl z = s t = 0 z = s
102 101 fveq2d z = s t = 0 f z = f s
103 100 102 oveq12d z = s t = 0 1 t f z = 1 f s
104 97 103 oveq12d z = s t = 0 t f 0 + 1 t f z = 0 f 0 + 1 f s
105 ovex 0 f 0 + 1 f s V
106 104 86 105 ovmpoa s 0 1 0 0 1 s z 0 1 , t 0 1 t f 0 + 1 t f z 0 = 0 f 0 + 1 f s
107 95 16 106 sylancl φ f II Cn K f 0 = f 1 s 0 1 s z 0 1 , t 0 1 t f 0 + 1 t f z 0 = 0 f 0 + 1 f s
108 42 adantr φ f II Cn K f 0 = f 1 s 0 1 f 0
109 108 mul02d φ f II Cn K f 0 = f 1 s 0 1 0 f 0 = 0
110 26 toponunii = J
111 13 110 cnf f II Cn J f : 0 1
112 60 111 syl φ f II Cn K f 0 = f 1 f : 0 1
113 112 ffvelrnda φ f II Cn K f 0 = f 1 s 0 1 f s
114 113 mulid2d φ f II Cn K f 0 = f 1 s 0 1 1 f s = f s
115 109 114 oveq12d φ f II Cn K f 0 = f 1 s 0 1 0 f 0 + 1 f s = 0 + f s
116 113 addid2d φ f II Cn K f 0 = f 1 s 0 1 0 + f s = f s
117 107 115 116 3eqtrd φ f II Cn K f 0 = f 1 s 0 1 s z 0 1 , t 0 1 t f 0 + 1 t f z 0 = f s
118 1elunit 1 0 1
119 simpr z = s t = 1 t = 1
120 119 oveq1d z = s t = 1 t f 0 = 1 f 0
121 119 oveq2d z = s t = 1 1 t = 1 1
122 1m1e0 1 1 = 0
123 121 122 eqtrdi z = s t = 1 1 t = 0
124 simpl z = s t = 1 z = s
125 124 fveq2d z = s t = 1 f z = f s
126 123 125 oveq12d z = s t = 1 1 t f z = 0 f s
127 120 126 oveq12d z = s t = 1 t f 0 + 1 t f z = 1 f 0 + 0 f s
128 ovex 1 f 0 + 0 f s V
129 127 86 128 ovmpoa s 0 1 1 0 1 s z 0 1 , t 0 1 t f 0 + 1 t f z 1 = 1 f 0 + 0 f s
130 95 118 129 sylancl φ f II Cn K f 0 = f 1 s 0 1 s z 0 1 , t 0 1 t f 0 + 1 t f z 1 = 1 f 0 + 0 f s
131 108 mulid2d φ f II Cn K f 0 = f 1 s 0 1 1 f 0 = f 0
132 113 mul02d φ f II Cn K f 0 = f 1 s 0 1 0 f s = 0
133 131 132 oveq12d φ f II Cn K f 0 = f 1 s 0 1 1 f 0 + 0 f s = f 0 + 0
134 108 addid1d φ f II Cn K f 0 = f 1 s 0 1 f 0 + 0 = f 0
135 fvex f 0 V
136 135 fvconst2 s 0 1 0 1 × f 0 s = f 0
137 136 adantl φ f II Cn K f 0 = f 1 s 0 1 0 1 × f 0 s = f 0
138 134 137 eqtr4d φ f II Cn K f 0 = f 1 s 0 1 f 0 + 0 = 0 1 × f 0 s
139 130 133 138 3eqtrd φ f II Cn K f 0 = f 1 s 0 1 s z 0 1 , t 0 1 t f 0 + 1 t f z 1 = 0 1 × f 0 s
140 simpr z = 0 t = s t = s
141 140 oveq1d z = 0 t = s t f 0 = s f 0
142 140 oveq2d z = 0 t = s 1 t = 1 s
143 simpl z = 0 t = s z = 0
144 143 fveq2d z = 0 t = s f z = f 0
145 142 144 oveq12d z = 0 t = s 1 t f z = 1 s f 0
146 141 145 oveq12d z = 0 t = s t f 0 + 1 t f z = s f 0 + 1 s f 0
147 ovex s f 0 + 1 s f 0 V
148 146 86 147 ovmpoa 0 0 1 s 0 1 0 z 0 1 , t 0 1 t f 0 + 1 t f z s = s f 0 + 1 s f 0
149 16 95 148 sylancr φ f II Cn K f 0 = f 1 s 0 1 0 z 0 1 , t 0 1 t f 0 + 1 t f z s = s f 0 + 1 s f 0
150 30 95 sselid φ f II Cn K f 0 = f 1 s 0 1 s
151 pncan3 s 1 s + 1 - s = 1
152 150 47 151 sylancl φ f II Cn K f 0 = f 1 s 0 1 s + 1 - s = 1
153 152 oveq1d φ f II Cn K f 0 = f 1 s 0 1 s + 1 - s f 0 = 1 f 0
154 subcl 1 s 1 s
155 47 150 154 sylancr φ f II Cn K f 0 = f 1 s 0 1 1 s
156 150 155 108 adddird φ f II Cn K f 0 = f 1 s 0 1 s + 1 - s f 0 = s f 0 + 1 s f 0
157 153 156 131 3eqtr3d φ f II Cn K f 0 = f 1 s 0 1 s f 0 + 1 s f 0 = f 0
158 149 157 eqtrd φ f II Cn K f 0 = f 1 s 0 1 0 z 0 1 , t 0 1 t f 0 + 1 t f z s = f 0
159 simpr z = 1 t = s t = s
160 159 oveq1d z = 1 t = s t f 0 = s f 0
161 159 oveq2d z = 1 t = s 1 t = 1 s
162 simpl z = 1 t = s z = 1
163 162 fveq2d z = 1 t = s f z = f 1
164 161 163 oveq12d z = 1 t = s 1 t f z = 1 s f 1
165 160 164 oveq12d z = 1 t = s t f 0 + 1 t f z = s f 0 + 1 s f 1
166 ovex s f 0 + 1 s f 1 V
167 165 86 166 ovmpoa 1 0 1 s 0 1 1 z 0 1 , t 0 1 t f 0 + 1 t f z s = s f 0 + 1 s f 1
168 118 95 167 sylancr φ f II Cn K f 0 = f 1 s 0 1 1 z 0 1 , t 0 1 t f 0 + 1 t f z s = s f 0 + 1 s f 1
169 simplrr φ f II Cn K f 0 = f 1 s 0 1 f 0 = f 1
170 169 oveq2d φ f II Cn K f 0 = f 1 s 0 1 1 s f 0 = 1 s f 1
171 170 oveq2d φ f II Cn K f 0 = f 1 s 0 1 s f 0 + 1 s f 0 = s f 0 + 1 s f 1
172 157 171 169 3eqtr3d φ f II Cn K f 0 = f 1 s 0 1 s f 0 + 1 s f 1 = f 1
173 168 172 eqtrd φ f II Cn K f 0 = f 1 s 0 1 1 z 0 1 , t 0 1 t f 0 + 1 t f z s = f 1
174 6 22 94 117 139 158 173 isphtpy2d φ f II Cn K f 0 = f 1 z 0 1 , t 0 1 t f 0 + 1 t f z f PHtpy K 0 1 × f 0
175 174 ne0d φ f II Cn K f 0 = f 1 f PHtpy K 0 1 × f 0
176 isphtpc f ph K 0 1 × f 0 f II Cn K 0 1 × f 0 II Cn K f PHtpy K 0 1 × f 0
177 6 22 175 176 syl3anbrc φ f II Cn K f 0 = f 1 f ph K 0 1 × f 0
178 177 expr φ f II Cn K f 0 = f 1 f ph K 0 1 × f 0
179 178 ralrimiva φ f II Cn K f 0 = f 1 f ph K 0 1 × f 0
180 issconn K SConn K PConn f II Cn K f 0 = f 1 f ph K 0 1 × f 0
181 5 179 180 sylanbrc φ K SConn