Step |
Hyp |
Ref |
Expression |
1 |
|
cvxpconn.1 |
|
2 |
|
cvxpconn.2 |
|
3 |
|
cvxpconn.3 |
|
4 |
|
cvxpconn.4 |
|
5 |
1 2 3 4
|
cvxpconn |
|
6 |
|
simprl |
|
7 |
|
pconntop |
|
8 |
5 7
|
syl |
|
9 |
8
|
adantr |
|
10 |
|
toptopon2 |
|
11 |
9 10
|
sylib |
|
12 |
|
iiuni |
|
13 |
|
eqid |
|
14 |
12 13
|
cnf |
|
15 |
6 14
|
syl |
|
16 |
|
0elunit |
|
17 |
|
ffvelcdm |
|
18 |
15 16 17
|
sylancl |
|
19 |
|
eqid |
|
20 |
19
|
pcoptcl |
|
21 |
11 18 20
|
syl2anc |
|
22 |
21
|
simp1d |
|
23 |
|
iitopon |
|
24 |
23
|
a1i |
|
25 |
3
|
dfii3 |
|
26 |
3
|
cnfldtopon |
|
27 |
26
|
a1i |
|
28 |
|
unitsscn |
|
29 |
28
|
a1i |
|
30 |
27 27
|
cnmpt2nd |
|
31 |
25 27 29 25 27 29 30
|
cnmpt2res |
|
32 |
1
|
adantr |
|
33 |
|
resttopon |
|
34 |
26 1 33
|
sylancr |
|
35 |
4 34
|
eqeltrid |
|
36 |
|
toponuni |
|
37 |
35 36
|
syl |
|
38 |
37
|
adantr |
|
39 |
18 38
|
eleqtrrd |
|
40 |
32 39
|
sseldd |
|
41 |
24 24 27 40
|
cnmpt2c |
|
42 |
3
|
mpomulcn |
|
43 |
42
|
a1i |
|
44 |
|
oveq12 |
|
45 |
24 24 31 41 27 27 43 44
|
cnmpt22 |
|
46 |
|
ax-1cn |
|
47 |
46
|
a1i |
|
48 |
24 24 27 47
|
cnmpt2c |
|
49 |
3
|
subcn |
|
50 |
49
|
a1i |
|
51 |
24 24 48 31 50
|
cnmpt22f |
|
52 |
24 24
|
cnmpt1st |
|
53 |
3
|
cnfldtop |
|
54 |
|
cnrest2r |
|
55 |
53 54
|
ax-mp |
|
56 |
4
|
oveq2i |
|
57 |
6 56
|
eleqtrdi |
|
58 |
55 57
|
sselid |
|
59 |
24 24 52 58
|
cnmpt21f |
|
60 |
|
oveq12 |
|
61 |
24 24 51 59 27 27 43 60
|
cnmpt22 |
|
62 |
3
|
addcn |
|
63 |
62
|
a1i |
|
64 |
24 24 45 61 63
|
cnmpt22f |
|
65 |
|
oveq2 |
|
66 |
65
|
oveq1d |
|
67 |
66
|
eleq1d |
|
68 |
|
oveq2 |
|
69 |
68
|
oveq2d |
|
70 |
69
|
eleq1d |
|
71 |
2
|
3exp2 |
|
72 |
71
|
imp42 |
|
73 |
72
|
an32s |
|
74 |
73
|
ralrimivva |
|
75 |
74
|
ad2ant2rl |
|
76 |
39
|
adantr |
|
77 |
15
|
adantr |
|
78 |
|
simprl |
|
79 |
77 78
|
ffvelcdmd |
|
80 |
38
|
adantr |
|
81 |
79 80
|
eleqtrrd |
|
82 |
67 70 75 76 81
|
rspc2dv |
|
83 |
82
|
ralrimivva |
|
84 |
|
eqid |
|
85 |
84
|
fmpo |
|
86 |
83 85
|
sylib |
|
87 |
86
|
frnd |
|
88 |
|
cnrest2 |
|
89 |
26 87 32 88
|
mp3an2i |
|
90 |
64 89
|
mpbid |
|
91 |
4
|
oveq2i |
|
92 |
90 91
|
eleqtrrdi |
|
93 |
|
simpr |
|
94 |
|
simpr |
|
95 |
94
|
oveq1d |
|
96 |
94
|
oveq2d |
|
97 |
|
1m0e1 |
|
98 |
96 97
|
eqtrdi |
|
99 |
|
simpl |
|
100 |
99
|
fveq2d |
|
101 |
98 100
|
oveq12d |
|
102 |
95 101
|
oveq12d |
|
103 |
|
ovex |
|
104 |
102 84 103
|
ovmpoa |
|
105 |
93 16 104
|
sylancl |
|
106 |
40
|
adantr |
|
107 |
106
|
mul02d |
|
108 |
26
|
toponunii |
|
109 |
12 108
|
cnf |
|
110 |
58 109
|
syl |
|
111 |
110
|
ffvelcdmda |
|
112 |
111
|
mullidd |
|
113 |
107 112
|
oveq12d |
|
114 |
111
|
addlidd |
|
115 |
105 113 114
|
3eqtrd |
|
116 |
|
1elunit |
|
117 |
|
simpr |
|
118 |
117
|
oveq1d |
|
119 |
117
|
oveq2d |
|
120 |
|
1m1e0 |
|
121 |
119 120
|
eqtrdi |
|
122 |
|
simpl |
|
123 |
122
|
fveq2d |
|
124 |
121 123
|
oveq12d |
|
125 |
118 124
|
oveq12d |
|
126 |
|
ovex |
|
127 |
125 84 126
|
ovmpoa |
|
128 |
93 116 127
|
sylancl |
|
129 |
106
|
mullidd |
|
130 |
111
|
mul02d |
|
131 |
129 130
|
oveq12d |
|
132 |
106
|
addridd |
|
133 |
|
fvex |
|
134 |
133
|
fvconst2 |
|
135 |
134
|
adantl |
|
136 |
132 135
|
eqtr4d |
|
137 |
128 131 136
|
3eqtrd |
|
138 |
|
simpr |
|
139 |
138
|
oveq1d |
|
140 |
138
|
oveq2d |
|
141 |
|
simpl |
|
142 |
141
|
fveq2d |
|
143 |
140 142
|
oveq12d |
|
144 |
139 143
|
oveq12d |
|
145 |
|
ovex |
|
146 |
144 84 145
|
ovmpoa |
|
147 |
16 93 146
|
sylancr |
|
148 |
28 93
|
sselid |
|
149 |
|
pncan3 |
|
150 |
148 46 149
|
sylancl |
|
151 |
150
|
oveq1d |
|
152 |
|
subcl |
|
153 |
46 148 152
|
sylancr |
|
154 |
148 153 106
|
adddird |
|
155 |
151 154 129
|
3eqtr3d |
|
156 |
147 155
|
eqtrd |
|
157 |
|
simpr |
|
158 |
157
|
oveq1d |
|
159 |
157
|
oveq2d |
|
160 |
|
simpl |
|
161 |
160
|
fveq2d |
|
162 |
159 161
|
oveq12d |
|
163 |
158 162
|
oveq12d |
|
164 |
|
ovex |
|
165 |
163 84 164
|
ovmpoa |
|
166 |
116 93 165
|
sylancr |
|
167 |
|
simplrr |
|
168 |
167
|
oveq2d |
|
169 |
168
|
oveq2d |
|
170 |
155 169 167
|
3eqtr3d |
|
171 |
166 170
|
eqtrd |
|
172 |
6 22 92 115 137 156 171
|
isphtpy2d |
|
173 |
172
|
ne0d |
|
174 |
|
isphtpc |
|
175 |
6 22 173 174
|
syl3anbrc |
|
176 |
175
|
expr |
|
177 |
176
|
ralrimiva |
|
178 |
|
issconn |
|
179 |
5 177 178
|
sylanbrc |
|