| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cvxpconn.1 |
|
| 2 |
|
cvxpconn.2 |
|
| 3 |
|
cvxpconn.3 |
|
| 4 |
|
cvxpconn.4 |
|
| 5 |
1 2 3 4
|
cvxpconn |
|
| 6 |
|
simprl |
|
| 7 |
|
pconntop |
|
| 8 |
5 7
|
syl |
|
| 9 |
8
|
adantr |
|
| 10 |
|
toptopon2 |
|
| 11 |
9 10
|
sylib |
|
| 12 |
|
iiuni |
|
| 13 |
|
eqid |
|
| 14 |
12 13
|
cnf |
|
| 15 |
6 14
|
syl |
|
| 16 |
|
0elunit |
|
| 17 |
|
ffvelcdm |
|
| 18 |
15 16 17
|
sylancl |
|
| 19 |
|
eqid |
|
| 20 |
19
|
pcoptcl |
|
| 21 |
11 18 20
|
syl2anc |
|
| 22 |
21
|
simp1d |
|
| 23 |
|
iitopon |
|
| 24 |
23
|
a1i |
|
| 25 |
3
|
dfii3 |
|
| 26 |
3
|
cnfldtopon |
|
| 27 |
26
|
a1i |
|
| 28 |
|
unitsscn |
|
| 29 |
28
|
a1i |
|
| 30 |
27 27
|
cnmpt2nd |
|
| 31 |
25 27 29 25 27 29 30
|
cnmpt2res |
|
| 32 |
1
|
adantr |
|
| 33 |
|
resttopon |
|
| 34 |
26 1 33
|
sylancr |
|
| 35 |
4 34
|
eqeltrid |
|
| 36 |
|
toponuni |
|
| 37 |
35 36
|
syl |
|
| 38 |
37
|
adantr |
|
| 39 |
18 38
|
eleqtrrd |
|
| 40 |
32 39
|
sseldd |
|
| 41 |
24 24 27 40
|
cnmpt2c |
|
| 42 |
3
|
mpomulcn |
|
| 43 |
42
|
a1i |
|
| 44 |
|
oveq12 |
|
| 45 |
24 24 31 41 27 27 43 44
|
cnmpt22 |
|
| 46 |
|
ax-1cn |
|
| 47 |
46
|
a1i |
|
| 48 |
24 24 27 47
|
cnmpt2c |
|
| 49 |
3
|
subcn |
|
| 50 |
49
|
a1i |
|
| 51 |
24 24 48 31 50
|
cnmpt22f |
|
| 52 |
24 24
|
cnmpt1st |
|
| 53 |
3
|
cnfldtop |
|
| 54 |
|
cnrest2r |
|
| 55 |
53 54
|
ax-mp |
|
| 56 |
4
|
oveq2i |
|
| 57 |
6 56
|
eleqtrdi |
|
| 58 |
55 57
|
sselid |
|
| 59 |
24 24 52 58
|
cnmpt21f |
|
| 60 |
|
oveq12 |
|
| 61 |
24 24 51 59 27 27 43 60
|
cnmpt22 |
|
| 62 |
3
|
addcn |
|
| 63 |
62
|
a1i |
|
| 64 |
24 24 45 61 63
|
cnmpt22f |
|
| 65 |
|
oveq2 |
|
| 66 |
65
|
oveq1d |
|
| 67 |
66
|
eleq1d |
|
| 68 |
|
oveq2 |
|
| 69 |
68
|
oveq2d |
|
| 70 |
69
|
eleq1d |
|
| 71 |
2
|
3exp2 |
|
| 72 |
71
|
imp42 |
|
| 73 |
72
|
an32s |
|
| 74 |
73
|
ralrimivva |
|
| 75 |
74
|
ad2ant2rl |
|
| 76 |
39
|
adantr |
|
| 77 |
15
|
adantr |
|
| 78 |
|
simprl |
|
| 79 |
77 78
|
ffvelcdmd |
|
| 80 |
38
|
adantr |
|
| 81 |
79 80
|
eleqtrrd |
|
| 82 |
67 70 75 76 81
|
rspc2dv |
|
| 83 |
82
|
ralrimivva |
|
| 84 |
|
eqid |
|
| 85 |
84
|
fmpo |
|
| 86 |
83 85
|
sylib |
|
| 87 |
86
|
frnd |
|
| 88 |
|
cnrest2 |
|
| 89 |
26 87 32 88
|
mp3an2i |
|
| 90 |
64 89
|
mpbid |
|
| 91 |
4
|
oveq2i |
|
| 92 |
90 91
|
eleqtrrdi |
|
| 93 |
|
simpr |
|
| 94 |
|
simpr |
|
| 95 |
94
|
oveq1d |
|
| 96 |
94
|
oveq2d |
|
| 97 |
|
1m0e1 |
|
| 98 |
96 97
|
eqtrdi |
|
| 99 |
|
simpl |
|
| 100 |
99
|
fveq2d |
|
| 101 |
98 100
|
oveq12d |
|
| 102 |
95 101
|
oveq12d |
|
| 103 |
|
ovex |
|
| 104 |
102 84 103
|
ovmpoa |
|
| 105 |
93 16 104
|
sylancl |
|
| 106 |
40
|
adantr |
|
| 107 |
106
|
mul02d |
|
| 108 |
26
|
toponunii |
|
| 109 |
12 108
|
cnf |
|
| 110 |
58 109
|
syl |
|
| 111 |
110
|
ffvelcdmda |
|
| 112 |
111
|
mullidd |
|
| 113 |
107 112
|
oveq12d |
|
| 114 |
111
|
addlidd |
|
| 115 |
105 113 114
|
3eqtrd |
|
| 116 |
|
1elunit |
|
| 117 |
|
simpr |
|
| 118 |
117
|
oveq1d |
|
| 119 |
117
|
oveq2d |
|
| 120 |
|
1m1e0 |
|
| 121 |
119 120
|
eqtrdi |
|
| 122 |
|
simpl |
|
| 123 |
122
|
fveq2d |
|
| 124 |
121 123
|
oveq12d |
|
| 125 |
118 124
|
oveq12d |
|
| 126 |
|
ovex |
|
| 127 |
125 84 126
|
ovmpoa |
|
| 128 |
93 116 127
|
sylancl |
|
| 129 |
106
|
mullidd |
|
| 130 |
111
|
mul02d |
|
| 131 |
129 130
|
oveq12d |
|
| 132 |
106
|
addridd |
|
| 133 |
|
fvex |
|
| 134 |
133
|
fvconst2 |
|
| 135 |
134
|
adantl |
|
| 136 |
132 135
|
eqtr4d |
|
| 137 |
128 131 136
|
3eqtrd |
|
| 138 |
|
simpr |
|
| 139 |
138
|
oveq1d |
|
| 140 |
138
|
oveq2d |
|
| 141 |
|
simpl |
|
| 142 |
141
|
fveq2d |
|
| 143 |
140 142
|
oveq12d |
|
| 144 |
139 143
|
oveq12d |
|
| 145 |
|
ovex |
|
| 146 |
144 84 145
|
ovmpoa |
|
| 147 |
16 93 146
|
sylancr |
|
| 148 |
28 93
|
sselid |
|
| 149 |
|
pncan3 |
|
| 150 |
148 46 149
|
sylancl |
|
| 151 |
150
|
oveq1d |
|
| 152 |
|
subcl |
|
| 153 |
46 148 152
|
sylancr |
|
| 154 |
148 153 106
|
adddird |
|
| 155 |
151 154 129
|
3eqtr3d |
|
| 156 |
147 155
|
eqtrd |
|
| 157 |
|
simpr |
|
| 158 |
157
|
oveq1d |
|
| 159 |
157
|
oveq2d |
|
| 160 |
|
simpl |
|
| 161 |
160
|
fveq2d |
|
| 162 |
159 161
|
oveq12d |
|
| 163 |
158 162
|
oveq12d |
|
| 164 |
|
ovex |
|
| 165 |
163 84 164
|
ovmpoa |
|
| 166 |
116 93 165
|
sylancr |
|
| 167 |
|
simplrr |
|
| 168 |
167
|
oveq2d |
|
| 169 |
168
|
oveq2d |
|
| 170 |
155 169 167
|
3eqtr3d |
|
| 171 |
166 170
|
eqtrd |
|
| 172 |
6 22 92 115 137 156 171
|
isphtpy2d |
|
| 173 |
172
|
ne0d |
|
| 174 |
|
isphtpc |
|
| 175 |
6 22 173 174
|
syl3anbrc |
|
| 176 |
175
|
expr |
|
| 177 |
176
|
ralrimiva |
|
| 178 |
|
issconn |
|
| 179 |
5 177 178
|
sylanbrc |
|