Metamath Proof Explorer


Theorem cvxsconn

Description: A convex subset of the complex numbers is simply connected. (Contributed by Mario Carneiro, 12-Feb-2015) Avoid ax-mulf . (Revised by GG, 19-Apr-2025)

Ref Expression
Hypotheses cvxpconn.1 φ S
cvxpconn.2 φ x S y S t 0 1 t x + 1 t y S
cvxpconn.3 J = TopOpen fld
cvxpconn.4 K = J 𝑡 S
Assertion cvxsconn φ K SConn

Proof

Step Hyp Ref Expression
1 cvxpconn.1 φ S
2 cvxpconn.2 φ x S y S t 0 1 t x + 1 t y S
3 cvxpconn.3 J = TopOpen fld
4 cvxpconn.4 K = J 𝑡 S
5 1 2 3 4 cvxpconn φ K PConn
6 simprl φ f II Cn K f 0 = f 1 f II Cn K
7 pconntop K PConn K Top
8 5 7 syl φ K Top
9 8 adantr φ f II Cn K f 0 = f 1 K Top
10 toptopon2 K Top K TopOn K
11 9 10 sylib φ f II Cn K f 0 = f 1 K TopOn K
12 iiuni 0 1 = II
13 eqid K = K
14 12 13 cnf f II Cn K f : 0 1 K
15 6 14 syl φ f II Cn K f 0 = f 1 f : 0 1 K
16 0elunit 0 0 1
17 ffvelcdm f : 0 1 K 0 0 1 f 0 K
18 15 16 17 sylancl φ f II Cn K f 0 = f 1 f 0 K
19 eqid 0 1 × f 0 = 0 1 × f 0
20 19 pcoptcl K TopOn K f 0 K 0 1 × f 0 II Cn K 0 1 × f 0 0 = f 0 0 1 × f 0 1 = f 0
21 11 18 20 syl2anc φ f II Cn K f 0 = f 1 0 1 × f 0 II Cn K 0 1 × f 0 0 = f 0 0 1 × f 0 1 = f 0
22 21 simp1d φ f II Cn K f 0 = f 1 0 1 × f 0 II Cn K
23 iitopon II TopOn 0 1
24 23 a1i φ f II Cn K f 0 = f 1 II TopOn 0 1
25 3 dfii3 II = J 𝑡 0 1
26 3 cnfldtopon J TopOn
27 26 a1i φ f II Cn K f 0 = f 1 J TopOn
28 unitsscn 0 1
29 28 a1i φ f II Cn K f 0 = f 1 0 1
30 27 27 cnmpt2nd φ f II Cn K f 0 = f 1 z , t t J × t J Cn J
31 25 27 29 25 27 29 30 cnmpt2res φ f II Cn K f 0 = f 1 z 0 1 , t 0 1 t II × t II Cn J
32 1 adantr φ f II Cn K f 0 = f 1 S
33 resttopon J TopOn S J 𝑡 S TopOn S
34 26 1 33 sylancr φ J 𝑡 S TopOn S
35 4 34 eqeltrid φ K TopOn S
36 toponuni K TopOn S S = K
37 35 36 syl φ S = K
38 37 adantr φ f II Cn K f 0 = f 1 S = K
39 18 38 eleqtrrd φ f II Cn K f 0 = f 1 f 0 S
40 32 39 sseldd φ f II Cn K f 0 = f 1 f 0
41 24 24 27 40 cnmpt2c φ f II Cn K f 0 = f 1 z 0 1 , t 0 1 f 0 II × t II Cn J
42 3 mpomulcn u , v u v J × t J Cn J
43 42 a1i φ f II Cn K f 0 = f 1 u , v u v J × t J Cn J
44 oveq12 u = t v = f 0 u v = t f 0
45 24 24 31 41 27 27 43 44 cnmpt22 φ f II Cn K f 0 = f 1 z 0 1 , t 0 1 t f 0 II × t II Cn J
46 ax-1cn 1
47 46 a1i φ f II Cn K f 0 = f 1 1
48 24 24 27 47 cnmpt2c φ f II Cn K f 0 = f 1 z 0 1 , t 0 1 1 II × t II Cn J
49 3 subcn J × t J Cn J
50 49 a1i φ f II Cn K f 0 = f 1 J × t J Cn J
51 24 24 48 31 50 cnmpt22f φ f II Cn K f 0 = f 1 z 0 1 , t 0 1 1 t II × t II Cn J
52 24 24 cnmpt1st φ f II Cn K f 0 = f 1 z 0 1 , t 0 1 z II × t II Cn II
53 3 cnfldtop J Top
54 cnrest2r J Top II Cn J 𝑡 S II Cn J
55 53 54 ax-mp II Cn J 𝑡 S II Cn J
56 4 oveq2i II Cn K = II Cn J 𝑡 S
57 6 56 eleqtrdi φ f II Cn K f 0 = f 1 f II Cn J 𝑡 S
58 55 57 sselid φ f II Cn K f 0 = f 1 f II Cn J
59 24 24 52 58 cnmpt21f φ f II Cn K f 0 = f 1 z 0 1 , t 0 1 f z II × t II Cn J
60 oveq12 u = 1 t v = f z u v = 1 t f z
61 24 24 51 59 27 27 43 60 cnmpt22 φ f II Cn K f 0 = f 1 z 0 1 , t 0 1 1 t f z II × t II Cn J
62 3 addcn + J × t J Cn J
63 62 a1i φ f II Cn K f 0 = f 1 + J × t J Cn J
64 24 24 45 61 63 cnmpt22f φ f II Cn K f 0 = f 1 z 0 1 , t 0 1 t f 0 + 1 t f z II × t II Cn J
65 oveq2 x = f 0 t x = t f 0
66 65 oveq1d x = f 0 t x + 1 t y = t f 0 + 1 t y
67 66 eleq1d x = f 0 t x + 1 t y S t f 0 + 1 t y S
68 oveq2 y = f z 1 t y = 1 t f z
69 68 oveq2d y = f z t f 0 + 1 t y = t f 0 + 1 t f z
70 69 eleq1d y = f z t f 0 + 1 t y S t f 0 + 1 t f z S
71 2 3exp2 φ x S y S t 0 1 t x + 1 t y S
72 71 imp42 φ x S y S t 0 1 t x + 1 t y S
73 72 an32s φ t 0 1 x S y S t x + 1 t y S
74 73 ralrimivva φ t 0 1 x S y S t x + 1 t y S
75 74 ad2ant2rl φ f II Cn K f 0 = f 1 z 0 1 t 0 1 x S y S t x + 1 t y S
76 39 adantr φ f II Cn K f 0 = f 1 z 0 1 t 0 1 f 0 S
77 15 adantr φ f II Cn K f 0 = f 1 z 0 1 t 0 1 f : 0 1 K
78 simprl φ f II Cn K f 0 = f 1 z 0 1 t 0 1 z 0 1
79 77 78 ffvelcdmd φ f II Cn K f 0 = f 1 z 0 1 t 0 1 f z K
80 38 adantr φ f II Cn K f 0 = f 1 z 0 1 t 0 1 S = K
81 79 80 eleqtrrd φ f II Cn K f 0 = f 1 z 0 1 t 0 1 f z S
82 67 70 75 76 81 rspc2dv φ f II Cn K f 0 = f 1 z 0 1 t 0 1 t f 0 + 1 t f z S
83 82 ralrimivva φ f II Cn K f 0 = f 1 z 0 1 t 0 1 t f 0 + 1 t f z S
84 eqid z 0 1 , t 0 1 t f 0 + 1 t f z = z 0 1 , t 0 1 t f 0 + 1 t f z
85 84 fmpo z 0 1 t 0 1 t f 0 + 1 t f z S z 0 1 , t 0 1 t f 0 + 1 t f z : 0 1 × 0 1 S
86 83 85 sylib φ f II Cn K f 0 = f 1 z 0 1 , t 0 1 t f 0 + 1 t f z : 0 1 × 0 1 S
87 86 frnd φ f II Cn K f 0 = f 1 ran z 0 1 , t 0 1 t f 0 + 1 t f z S
88 cnrest2 J TopOn ran z 0 1 , t 0 1 t f 0 + 1 t f z S S z 0 1 , t 0 1 t f 0 + 1 t f z II × t II Cn J z 0 1 , t 0 1 t f 0 + 1 t f z II × t II Cn J 𝑡 S
89 26 87 32 88 mp3an2i φ f II Cn K f 0 = f 1 z 0 1 , t 0 1 t f 0 + 1 t f z II × t II Cn J z 0 1 , t 0 1 t f 0 + 1 t f z II × t II Cn J 𝑡 S
90 64 89 mpbid φ f II Cn K f 0 = f 1 z 0 1 , t 0 1 t f 0 + 1 t f z II × t II Cn J 𝑡 S
91 4 oveq2i II × t II Cn K = II × t II Cn J 𝑡 S
92 90 91 eleqtrrdi φ f II Cn K f 0 = f 1 z 0 1 , t 0 1 t f 0 + 1 t f z II × t II Cn K
93 simpr φ f II Cn K f 0 = f 1 s 0 1 s 0 1
94 simpr z = s t = 0 t = 0
95 94 oveq1d z = s t = 0 t f 0 = 0 f 0
96 94 oveq2d z = s t = 0 1 t = 1 0
97 1m0e1 1 0 = 1
98 96 97 eqtrdi z = s t = 0 1 t = 1
99 simpl z = s t = 0 z = s
100 99 fveq2d z = s t = 0 f z = f s
101 98 100 oveq12d z = s t = 0 1 t f z = 1 f s
102 95 101 oveq12d z = s t = 0 t f 0 + 1 t f z = 0 f 0 + 1 f s
103 ovex 0 f 0 + 1 f s V
104 102 84 103 ovmpoa s 0 1 0 0 1 s z 0 1 , t 0 1 t f 0 + 1 t f z 0 = 0 f 0 + 1 f s
105 93 16 104 sylancl φ f II Cn K f 0 = f 1 s 0 1 s z 0 1 , t 0 1 t f 0 + 1 t f z 0 = 0 f 0 + 1 f s
106 40 adantr φ f II Cn K f 0 = f 1 s 0 1 f 0
107 106 mul02d φ f II Cn K f 0 = f 1 s 0 1 0 f 0 = 0
108 26 toponunii = J
109 12 108 cnf f II Cn J f : 0 1
110 58 109 syl φ f II Cn K f 0 = f 1 f : 0 1
111 110 ffvelcdmda φ f II Cn K f 0 = f 1 s 0 1 f s
112 111 mullidd φ f II Cn K f 0 = f 1 s 0 1 1 f s = f s
113 107 112 oveq12d φ f II Cn K f 0 = f 1 s 0 1 0 f 0 + 1 f s = 0 + f s
114 111 addlidd φ f II Cn K f 0 = f 1 s 0 1 0 + f s = f s
115 105 113 114 3eqtrd φ f II Cn K f 0 = f 1 s 0 1 s z 0 1 , t 0 1 t f 0 + 1 t f z 0 = f s
116 1elunit 1 0 1
117 simpr z = s t = 1 t = 1
118 117 oveq1d z = s t = 1 t f 0 = 1 f 0
119 117 oveq2d z = s t = 1 1 t = 1 1
120 1m1e0 1 1 = 0
121 119 120 eqtrdi z = s t = 1 1 t = 0
122 simpl z = s t = 1 z = s
123 122 fveq2d z = s t = 1 f z = f s
124 121 123 oveq12d z = s t = 1 1 t f z = 0 f s
125 118 124 oveq12d z = s t = 1 t f 0 + 1 t f z = 1 f 0 + 0 f s
126 ovex 1 f 0 + 0 f s V
127 125 84 126 ovmpoa s 0 1 1 0 1 s z 0 1 , t 0 1 t f 0 + 1 t f z 1 = 1 f 0 + 0 f s
128 93 116 127 sylancl φ f II Cn K f 0 = f 1 s 0 1 s z 0 1 , t 0 1 t f 0 + 1 t f z 1 = 1 f 0 + 0 f s
129 106 mullidd φ f II Cn K f 0 = f 1 s 0 1 1 f 0 = f 0
130 111 mul02d φ f II Cn K f 0 = f 1 s 0 1 0 f s = 0
131 129 130 oveq12d φ f II Cn K f 0 = f 1 s 0 1 1 f 0 + 0 f s = f 0 + 0
132 106 addridd φ f II Cn K f 0 = f 1 s 0 1 f 0 + 0 = f 0
133 fvex f 0 V
134 133 fvconst2 s 0 1 0 1 × f 0 s = f 0
135 134 adantl φ f II Cn K f 0 = f 1 s 0 1 0 1 × f 0 s = f 0
136 132 135 eqtr4d φ f II Cn K f 0 = f 1 s 0 1 f 0 + 0 = 0 1 × f 0 s
137 128 131 136 3eqtrd φ f II Cn K f 0 = f 1 s 0 1 s z 0 1 , t 0 1 t f 0 + 1 t f z 1 = 0 1 × f 0 s
138 simpr z = 0 t = s t = s
139 138 oveq1d z = 0 t = s t f 0 = s f 0
140 138 oveq2d z = 0 t = s 1 t = 1 s
141 simpl z = 0 t = s z = 0
142 141 fveq2d z = 0 t = s f z = f 0
143 140 142 oveq12d z = 0 t = s 1 t f z = 1 s f 0
144 139 143 oveq12d z = 0 t = s t f 0 + 1 t f z = s f 0 + 1 s f 0
145 ovex s f 0 + 1 s f 0 V
146 144 84 145 ovmpoa 0 0 1 s 0 1 0 z 0 1 , t 0 1 t f 0 + 1 t f z s = s f 0 + 1 s f 0
147 16 93 146 sylancr φ f II Cn K f 0 = f 1 s 0 1 0 z 0 1 , t 0 1 t f 0 + 1 t f z s = s f 0 + 1 s f 0
148 28 93 sselid φ f II Cn K f 0 = f 1 s 0 1 s
149 pncan3 s 1 s + 1 - s = 1
150 148 46 149 sylancl φ f II Cn K f 0 = f 1 s 0 1 s + 1 - s = 1
151 150 oveq1d φ f II Cn K f 0 = f 1 s 0 1 s + 1 - s f 0 = 1 f 0
152 subcl 1 s 1 s
153 46 148 152 sylancr φ f II Cn K f 0 = f 1 s 0 1 1 s
154 148 153 106 adddird φ f II Cn K f 0 = f 1 s 0 1 s + 1 - s f 0 = s f 0 + 1 s f 0
155 151 154 129 3eqtr3d φ f II Cn K f 0 = f 1 s 0 1 s f 0 + 1 s f 0 = f 0
156 147 155 eqtrd φ f II Cn K f 0 = f 1 s 0 1 0 z 0 1 , t 0 1 t f 0 + 1 t f z s = f 0
157 simpr z = 1 t = s t = s
158 157 oveq1d z = 1 t = s t f 0 = s f 0
159 157 oveq2d z = 1 t = s 1 t = 1 s
160 simpl z = 1 t = s z = 1
161 160 fveq2d z = 1 t = s f z = f 1
162 159 161 oveq12d z = 1 t = s 1 t f z = 1 s f 1
163 158 162 oveq12d z = 1 t = s t f 0 + 1 t f z = s f 0 + 1 s f 1
164 ovex s f 0 + 1 s f 1 V
165 163 84 164 ovmpoa 1 0 1 s 0 1 1 z 0 1 , t 0 1 t f 0 + 1 t f z s = s f 0 + 1 s f 1
166 116 93 165 sylancr φ f II Cn K f 0 = f 1 s 0 1 1 z 0 1 , t 0 1 t f 0 + 1 t f z s = s f 0 + 1 s f 1
167 simplrr φ f II Cn K f 0 = f 1 s 0 1 f 0 = f 1
168 167 oveq2d φ f II Cn K f 0 = f 1 s 0 1 1 s f 0 = 1 s f 1
169 168 oveq2d φ f II Cn K f 0 = f 1 s 0 1 s f 0 + 1 s f 0 = s f 0 + 1 s f 1
170 155 169 167 3eqtr3d φ f II Cn K f 0 = f 1 s 0 1 s f 0 + 1 s f 1 = f 1
171 166 170 eqtrd φ f II Cn K f 0 = f 1 s 0 1 1 z 0 1 , t 0 1 t f 0 + 1 t f z s = f 1
172 6 22 92 115 137 156 171 isphtpy2d φ f II Cn K f 0 = f 1 z 0 1 , t 0 1 t f 0 + 1 t f z f PHtpy K 0 1 × f 0
173 172 ne0d φ f II Cn K f 0 = f 1 f PHtpy K 0 1 × f 0
174 isphtpc f ph K 0 1 × f 0 f II Cn K 0 1 × f 0 II Cn K f PHtpy K 0 1 × f 0
175 6 22 173 174 syl3anbrc φ f II Cn K f 0 = f 1 f ph K 0 1 × f 0
176 175 expr φ f II Cn K f 0 = f 1 f ph K 0 1 × f 0
177 176 ralrimiva φ f II Cn K f 0 = f 1 f ph K 0 1 × f 0
178 issconn K SConn K PConn f II Cn K f 0 = f 1 f ph K 0 1 × f 0
179 5 177 178 sylanbrc φ K SConn