Step |
Hyp |
Ref |
Expression |
1 |
|
cvxpconn.1 |
|
2 |
|
cvxpconn.2 |
|
3 |
|
cvxpconn.3 |
|
4 |
|
cvxpconn.4 |
|
5 |
1 2 3 4
|
cvxpconn |
|
6 |
|
simprl |
|
7 |
|
pconntop |
|
8 |
5 7
|
syl |
|
9 |
8
|
adantr |
|
10 |
|
eqid |
|
11 |
10
|
toptopon |
|
12 |
9 11
|
sylib |
|
13 |
|
iiuni |
|
14 |
13 10
|
cnf |
|
15 |
6 14
|
syl |
|
16 |
|
0elunit |
|
17 |
|
ffvelrn |
|
18 |
15 16 17
|
sylancl |
|
19 |
|
eqid |
|
20 |
19
|
pcoptcl |
|
21 |
12 18 20
|
syl2anc |
|
22 |
21
|
simp1d |
|
23 |
|
iitopon |
|
24 |
23
|
a1i |
|
25 |
3
|
dfii3 |
|
26 |
3
|
cnfldtopon |
|
27 |
26
|
a1i |
|
28 |
|
unitssre |
|
29 |
|
ax-resscn |
|
30 |
28 29
|
sstri |
|
31 |
30
|
a1i |
|
32 |
27 27
|
cnmpt2nd |
|
33 |
25 27 31 25 27 31 32
|
cnmpt2res |
|
34 |
1
|
adantr |
|
35 |
|
resttopon |
|
36 |
26 1 35
|
sylancr |
|
37 |
4 36
|
eqeltrid |
|
38 |
|
toponuni |
|
39 |
37 38
|
syl |
|
40 |
39
|
adantr |
|
41 |
18 40
|
eleqtrrd |
|
42 |
34 41
|
sseldd |
|
43 |
24 24 27 42
|
cnmpt2c |
|
44 |
3
|
mulcn |
|
45 |
44
|
a1i |
|
46 |
24 24 33 43 45
|
cnmpt22f |
|
47 |
|
ax-1cn |
|
48 |
47
|
a1i |
|
49 |
27 27 27 48
|
cnmpt2c |
|
50 |
3
|
subcn |
|
51 |
50
|
a1i |
|
52 |
27 27 49 32 51
|
cnmpt22f |
|
53 |
25 27 31 25 27 31 52
|
cnmpt2res |
|
54 |
24 24
|
cnmpt1st |
|
55 |
3
|
cnfldtop |
|
56 |
|
cnrest2r |
|
57 |
55 56
|
ax-mp |
|
58 |
4
|
oveq2i |
|
59 |
6 58
|
eleqtrdi |
|
60 |
57 59
|
sselid |
|
61 |
24 24 54 60
|
cnmpt21f |
|
62 |
24 24 53 61 45
|
cnmpt22f |
|
63 |
3
|
addcn |
|
64 |
63
|
a1i |
|
65 |
24 24 46 62 64
|
cnmpt22f |
|
66 |
41
|
adantr |
|
67 |
15
|
adantr |
|
68 |
|
simprl |
|
69 |
67 68
|
ffvelrnd |
|
70 |
40
|
adantr |
|
71 |
69 70
|
eleqtrrd |
|
72 |
2
|
3exp2 |
|
73 |
72
|
imp42 |
|
74 |
73
|
an32s |
|
75 |
74
|
ralrimivva |
|
76 |
75
|
ad2ant2rl |
|
77 |
|
oveq2 |
|
78 |
77
|
oveq1d |
|
79 |
78
|
eleq1d |
|
80 |
|
oveq2 |
|
81 |
80
|
oveq2d |
|
82 |
81
|
eleq1d |
|
83 |
79 82
|
rspc2va |
|
84 |
66 71 76 83
|
syl21anc |
|
85 |
84
|
ralrimivva |
|
86 |
|
eqid |
|
87 |
86
|
fmpo |
|
88 |
85 87
|
sylib |
|
89 |
88
|
frnd |
|
90 |
|
cnrest2 |
|
91 |
27 89 34 90
|
syl3anc |
|
92 |
65 91
|
mpbid |
|
93 |
4
|
oveq2i |
|
94 |
92 93
|
eleqtrrdi |
|
95 |
|
simpr |
|
96 |
|
simpr |
|
97 |
96
|
oveq1d |
|
98 |
96
|
oveq2d |
|
99 |
|
1m0e1 |
|
100 |
98 99
|
eqtrdi |
|
101 |
|
simpl |
|
102 |
101
|
fveq2d |
|
103 |
100 102
|
oveq12d |
|
104 |
97 103
|
oveq12d |
|
105 |
|
ovex |
|
106 |
104 86 105
|
ovmpoa |
|
107 |
95 16 106
|
sylancl |
|
108 |
42
|
adantr |
|
109 |
108
|
mul02d |
|
110 |
26
|
toponunii |
|
111 |
13 110
|
cnf |
|
112 |
60 111
|
syl |
|
113 |
112
|
ffvelrnda |
|
114 |
113
|
mulid2d |
|
115 |
109 114
|
oveq12d |
|
116 |
113
|
addid2d |
|
117 |
107 115 116
|
3eqtrd |
|
118 |
|
1elunit |
|
119 |
|
simpr |
|
120 |
119
|
oveq1d |
|
121 |
119
|
oveq2d |
|
122 |
|
1m1e0 |
|
123 |
121 122
|
eqtrdi |
|
124 |
|
simpl |
|
125 |
124
|
fveq2d |
|
126 |
123 125
|
oveq12d |
|
127 |
120 126
|
oveq12d |
|
128 |
|
ovex |
|
129 |
127 86 128
|
ovmpoa |
|
130 |
95 118 129
|
sylancl |
|
131 |
108
|
mulid2d |
|
132 |
113
|
mul02d |
|
133 |
131 132
|
oveq12d |
|
134 |
108
|
addid1d |
|
135 |
|
fvex |
|
136 |
135
|
fvconst2 |
|
137 |
136
|
adantl |
|
138 |
134 137
|
eqtr4d |
|
139 |
130 133 138
|
3eqtrd |
|
140 |
|
simpr |
|
141 |
140
|
oveq1d |
|
142 |
140
|
oveq2d |
|
143 |
|
simpl |
|
144 |
143
|
fveq2d |
|
145 |
142 144
|
oveq12d |
|
146 |
141 145
|
oveq12d |
|
147 |
|
ovex |
|
148 |
146 86 147
|
ovmpoa |
|
149 |
16 95 148
|
sylancr |
|
150 |
30 95
|
sselid |
|
151 |
|
pncan3 |
|
152 |
150 47 151
|
sylancl |
|
153 |
152
|
oveq1d |
|
154 |
|
subcl |
|
155 |
47 150 154
|
sylancr |
|
156 |
150 155 108
|
adddird |
|
157 |
153 156 131
|
3eqtr3d |
|
158 |
149 157
|
eqtrd |
|
159 |
|
simpr |
|
160 |
159
|
oveq1d |
|
161 |
159
|
oveq2d |
|
162 |
|
simpl |
|
163 |
162
|
fveq2d |
|
164 |
161 163
|
oveq12d |
|
165 |
160 164
|
oveq12d |
|
166 |
|
ovex |
|
167 |
165 86 166
|
ovmpoa |
|
168 |
118 95 167
|
sylancr |
|
169 |
|
simplrr |
|
170 |
169
|
oveq2d |
|
171 |
170
|
oveq2d |
|
172 |
157 171 169
|
3eqtr3d |
|
173 |
168 172
|
eqtrd |
|
174 |
6 22 94 117 139 158 173
|
isphtpy2d |
|
175 |
174
|
ne0d |
|
176 |
|
isphtpc |
|
177 |
6 22 175 176
|
syl3anbrc |
|
178 |
177
|
expr |
|
179 |
178
|
ralrimiva |
|
180 |
|
issconn |
|
181 |
5 179 180
|
sylanbrc |
|