Step |
Hyp |
Ref |
Expression |
1 |
|
cvxpconn.1 |
|
2 |
|
cvxpconn.2 |
|
3 |
|
cvxpconn.3 |
|
4 |
|
cvxpconn.4 |
|
5 |
3
|
cnfldtop |
|
6 |
|
cnex |
|
7 |
|
ssexg |
|
8 |
1 6 7
|
sylancl |
|
9 |
|
resttop |
|
10 |
5 8 9
|
sylancr |
|
11 |
4 10
|
eqeltrid |
|
12 |
3
|
dfii3 |
|
13 |
3
|
cnfldtopon |
|
14 |
13
|
a1i |
|
15 |
|
unitssre |
|
16 |
|
ax-resscn |
|
17 |
15 16
|
sstri |
|
18 |
17
|
a1i |
|
19 |
14
|
cnmptid |
|
20 |
1
|
adantr |
|
21 |
|
simprr |
|
22 |
20 21
|
sseldd |
|
23 |
14 14 22
|
cnmptc |
|
24 |
3
|
mulcn |
|
25 |
24
|
a1i |
|
26 |
14 19 23 25
|
cnmpt12f |
|
27 |
|
1cnd |
|
28 |
14 14 27
|
cnmptc |
|
29 |
3
|
subcn |
|
30 |
29
|
a1i |
|
31 |
14 28 19 30
|
cnmpt12f |
|
32 |
|
simprl |
|
33 |
20 32
|
sseldd |
|
34 |
14 14 33
|
cnmptc |
|
35 |
14 31 34 25
|
cnmpt12f |
|
36 |
3
|
addcn |
|
37 |
36
|
a1i |
|
38 |
14 26 35 37
|
cnmpt12f |
|
39 |
12 14 18 38
|
cnmpt1res |
|
40 |
2
|
3exp2 |
|
41 |
40
|
com23 |
|
42 |
41
|
imp42 |
|
43 |
42
|
fmpttd |
|
44 |
43
|
frnd |
|
45 |
|
cnrest2 |
|
46 |
14 44 20 45
|
syl3anc |
|
47 |
39 46
|
mpbid |
|
48 |
4
|
oveq2i |
|
49 |
47 48
|
eleqtrrdi |
|
50 |
|
0elunit |
|
51 |
|
oveq1 |
|
52 |
|
oveq2 |
|
53 |
|
1m0e1 |
|
54 |
52 53
|
eqtrdi |
|
55 |
54
|
oveq1d |
|
56 |
51 55
|
oveq12d |
|
57 |
|
eqid |
|
58 |
|
ovex |
|
59 |
56 57 58
|
fvmpt |
|
60 |
50 59
|
ax-mp |
|
61 |
22
|
mul02d |
|
62 |
33
|
mulid2d |
|
63 |
61 62
|
oveq12d |
|
64 |
33
|
addid2d |
|
65 |
63 64
|
eqtrd |
|
66 |
60 65
|
eqtrid |
|
67 |
|
1elunit |
|
68 |
|
oveq1 |
|
69 |
|
oveq2 |
|
70 |
|
1m1e0 |
|
71 |
69 70
|
eqtrdi |
|
72 |
71
|
oveq1d |
|
73 |
68 72
|
oveq12d |
|
74 |
|
ovex |
|
75 |
73 57 74
|
fvmpt |
|
76 |
67 75
|
ax-mp |
|
77 |
22
|
mulid2d |
|
78 |
33
|
mul02d |
|
79 |
77 78
|
oveq12d |
|
80 |
22
|
addid1d |
|
81 |
79 80
|
eqtrd |
|
82 |
76 81
|
eqtrid |
|
83 |
|
fveq1 |
|
84 |
83
|
eqeq1d |
|
85 |
|
fveq1 |
|
86 |
85
|
eqeq1d |
|
87 |
84 86
|
anbi12d |
|
88 |
87
|
rspcev |
|
89 |
49 66 82 88
|
syl12anc |
|
90 |
89
|
ralrimivva |
|
91 |
|
resttopon |
|
92 |
13 1 91
|
sylancr |
|
93 |
4 92
|
eqeltrid |
|
94 |
|
toponuni |
|
95 |
93 94
|
syl |
|
96 |
95
|
raleqdv |
|
97 |
95 96
|
raleqbidv |
|
98 |
90 97
|
mpbid |
|
99 |
|
eqid |
|
100 |
99
|
ispconn |
|
101 |
11 98 100
|
sylanbrc |
|