Step |
Hyp |
Ref |
Expression |
1 |
|
cvxpconn.1 |
|
2 |
|
cvxpconn.2 |
|
3 |
|
cvxpconn.3 |
|
4 |
|
cvxpconn.4 |
|
5 |
3
|
cnfldtop |
|
6 |
|
cnex |
|
7 |
|
ssexg |
|
8 |
1 6 7
|
sylancl |
|
9 |
|
resttop |
|
10 |
5 8 9
|
sylancr |
|
11 |
4 10
|
eqeltrid |
|
12 |
3
|
dfii3 |
|
13 |
3
|
cnfldtopon |
|
14 |
13
|
a1i |
|
15 |
|
unitsscn |
|
16 |
15
|
a1i |
|
17 |
13
|
a1i |
|
18 |
17
|
cnmptid |
|
19 |
1
|
sselda |
|
20 |
17 17 19
|
cnmptc |
|
21 |
3
|
mpomulcn |
|
22 |
21
|
a1i |
|
23 |
|
oveq12 |
|
24 |
17 18 20 17 17 22 23
|
cnmpt12 |
|
25 |
24
|
adantrl |
|
26 |
13
|
a1i |
|
27 |
|
1cnd |
|
28 |
26 26 27
|
cnmptc |
|
29 |
3
|
cncfcn1 |
|
30 |
28 29
|
eleqtrrdi |
|
31 |
26
|
cnmptid |
|
32 |
31 29
|
eleqtrrdi |
|
33 |
30 32
|
subcncf |
|
34 |
33 29
|
eleqtrdi |
|
35 |
34
|
adantr |
|
36 |
1
|
adantr |
|
37 |
|
simprl |
|
38 |
36 37
|
sseldd |
|
39 |
14 14 38
|
cnmptc |
|
40 |
21
|
a1i |
|
41 |
|
oveq12 |
|
42 |
14 35 39 14 14 40 41
|
cnmpt12 |
|
43 |
3
|
addcn |
|
44 |
43
|
a1i |
|
45 |
14 25 42 44
|
cnmpt12f |
|
46 |
12 14 16 45
|
cnmpt1res |
|
47 |
2
|
3exp2 |
|
48 |
47
|
com23 |
|
49 |
48
|
imp42 |
|
50 |
49
|
fmpttd |
|
51 |
50
|
frnd |
|
52 |
|
cnrest2 |
|
53 |
13 51 36 52
|
mp3an2i |
|
54 |
46 53
|
mpbid |
|
55 |
4
|
oveq2i |
|
56 |
54 55
|
eleqtrrdi |
|
57 |
|
0elunit |
|
58 |
|
oveq1 |
|
59 |
|
oveq2 |
|
60 |
|
1m0e1 |
|
61 |
59 60
|
eqtrdi |
|
62 |
61
|
oveq1d |
|
63 |
58 62
|
oveq12d |
|
64 |
|
eqid |
|
65 |
|
ovex |
|
66 |
63 64 65
|
fvmpt |
|
67 |
57 66
|
ax-mp |
|
68 |
19
|
adantrl |
|
69 |
68
|
mul02d |
|
70 |
38
|
mullidd |
|
71 |
69 70
|
oveq12d |
|
72 |
38
|
addlidd |
|
73 |
71 72
|
eqtrd |
|
74 |
67 73
|
eqtrid |
|
75 |
|
1elunit |
|
76 |
|
oveq1 |
|
77 |
|
oveq2 |
|
78 |
|
1m1e0 |
|
79 |
77 78
|
eqtrdi |
|
80 |
79
|
oveq1d |
|
81 |
76 80
|
oveq12d |
|
82 |
|
ovex |
|
83 |
81 64 82
|
fvmpt |
|
84 |
75 83
|
ax-mp |
|
85 |
68
|
mullidd |
|
86 |
38
|
mul02d |
|
87 |
85 86
|
oveq12d |
|
88 |
68
|
addridd |
|
89 |
87 88
|
eqtrd |
|
90 |
84 89
|
eqtrid |
|
91 |
|
fveq1 |
|
92 |
91
|
eqeq1d |
|
93 |
|
fveq1 |
|
94 |
93
|
eqeq1d |
|
95 |
92 94
|
anbi12d |
|
96 |
95
|
rspcev |
|
97 |
56 74 90 96
|
syl12anc |
|
98 |
97
|
ralrimivva |
|
99 |
|
resttopon |
|
100 |
13 1 99
|
sylancr |
|
101 |
4 100
|
eqeltrid |
|
102 |
|
toponuni |
|
103 |
101 102
|
syl |
|
104 |
103
|
raleqdv |
|
105 |
103 104
|
raleqbidv |
|
106 |
98 105
|
mpbid |
|
107 |
|
eqid |
|
108 |
107
|
ispconn |
|
109 |
11 106 108
|
sylanbrc |
|