| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cvxpconn.1 |
|
| 2 |
|
cvxpconn.2 |
|
| 3 |
|
cvxpconn.3 |
|
| 4 |
|
cvxpconn.4 |
|
| 5 |
3
|
cnfldtop |
|
| 6 |
|
cnex |
|
| 7 |
|
ssexg |
|
| 8 |
1 6 7
|
sylancl |
|
| 9 |
|
resttop |
|
| 10 |
5 8 9
|
sylancr |
|
| 11 |
4 10
|
eqeltrid |
|
| 12 |
3
|
dfii3 |
|
| 13 |
3
|
cnfldtopon |
|
| 14 |
13
|
a1i |
|
| 15 |
|
unitsscn |
|
| 16 |
15
|
a1i |
|
| 17 |
13
|
a1i |
|
| 18 |
17
|
cnmptid |
|
| 19 |
1
|
sselda |
|
| 20 |
17 17 19
|
cnmptc |
|
| 21 |
3
|
mpomulcn |
|
| 22 |
21
|
a1i |
|
| 23 |
|
oveq12 |
|
| 24 |
17 18 20 17 17 22 23
|
cnmpt12 |
|
| 25 |
24
|
adantrl |
|
| 26 |
13
|
a1i |
|
| 27 |
|
1cnd |
|
| 28 |
26 26 27
|
cnmptc |
|
| 29 |
3
|
cncfcn1 |
|
| 30 |
28 29
|
eleqtrrdi |
|
| 31 |
26
|
cnmptid |
|
| 32 |
31 29
|
eleqtrrdi |
|
| 33 |
30 32
|
subcncf |
|
| 34 |
33 29
|
eleqtrdi |
|
| 35 |
34
|
adantr |
|
| 36 |
1
|
adantr |
|
| 37 |
|
simprl |
|
| 38 |
36 37
|
sseldd |
|
| 39 |
14 14 38
|
cnmptc |
|
| 40 |
21
|
a1i |
|
| 41 |
|
oveq12 |
|
| 42 |
14 35 39 14 14 40 41
|
cnmpt12 |
|
| 43 |
3
|
addcn |
|
| 44 |
43
|
a1i |
|
| 45 |
14 25 42 44
|
cnmpt12f |
|
| 46 |
12 14 16 45
|
cnmpt1res |
|
| 47 |
2
|
3exp2 |
|
| 48 |
47
|
com23 |
|
| 49 |
48
|
imp42 |
|
| 50 |
49
|
fmpttd |
|
| 51 |
50
|
frnd |
|
| 52 |
|
cnrest2 |
|
| 53 |
13 51 36 52
|
mp3an2i |
|
| 54 |
46 53
|
mpbid |
|
| 55 |
4
|
oveq2i |
|
| 56 |
54 55
|
eleqtrrdi |
|
| 57 |
|
0elunit |
|
| 58 |
|
oveq1 |
|
| 59 |
|
oveq2 |
|
| 60 |
|
1m0e1 |
|
| 61 |
59 60
|
eqtrdi |
|
| 62 |
61
|
oveq1d |
|
| 63 |
58 62
|
oveq12d |
|
| 64 |
|
eqid |
|
| 65 |
|
ovex |
|
| 66 |
63 64 65
|
fvmpt |
|
| 67 |
57 66
|
ax-mp |
|
| 68 |
19
|
adantrl |
|
| 69 |
68
|
mul02d |
|
| 70 |
38
|
mullidd |
|
| 71 |
69 70
|
oveq12d |
|
| 72 |
38
|
addlidd |
|
| 73 |
71 72
|
eqtrd |
|
| 74 |
67 73
|
eqtrid |
|
| 75 |
|
1elunit |
|
| 76 |
|
oveq1 |
|
| 77 |
|
oveq2 |
|
| 78 |
|
1m1e0 |
|
| 79 |
77 78
|
eqtrdi |
|
| 80 |
79
|
oveq1d |
|
| 81 |
76 80
|
oveq12d |
|
| 82 |
|
ovex |
|
| 83 |
81 64 82
|
fvmpt |
|
| 84 |
75 83
|
ax-mp |
|
| 85 |
68
|
mullidd |
|
| 86 |
38
|
mul02d |
|
| 87 |
85 86
|
oveq12d |
|
| 88 |
68
|
addridd |
|
| 89 |
87 88
|
eqtrd |
|
| 90 |
84 89
|
eqtrid |
|
| 91 |
|
fveq1 |
|
| 92 |
91
|
eqeq1d |
|
| 93 |
|
fveq1 |
|
| 94 |
93
|
eqeq1d |
|
| 95 |
92 94
|
anbi12d |
|
| 96 |
95
|
rspcev |
|
| 97 |
56 74 90 96
|
syl12anc |
|
| 98 |
97
|
ralrimivva |
|
| 99 |
|
resttopon |
|
| 100 |
13 1 99
|
sylancr |
|
| 101 |
4 100
|
eqeltrid |
|
| 102 |
|
toponuni |
|
| 103 |
101 102
|
syl |
|
| 104 |
103
|
raleqdv |
|
| 105 |
103 104
|
raleqbidv |
|
| 106 |
98 105
|
mpbid |
|
| 107 |
|
eqid |
|
| 108 |
107
|
ispconn |
|
| 109 |
11 106 108
|
sylanbrc |
|