Step |
Hyp |
Ref |
Expression |
1 |
|
cvxpconn.1 |
|- ( ph -> S C_ CC ) |
2 |
|
cvxpconn.2 |
|- ( ( ph /\ ( x e. S /\ y e. S /\ t e. ( 0 [,] 1 ) ) ) -> ( ( t x. x ) + ( ( 1 - t ) x. y ) ) e. S ) |
3 |
|
cvxpconn.3 |
|- J = ( TopOpen ` CCfld ) |
4 |
|
cvxpconn.4 |
|- K = ( J |`t S ) |
5 |
3
|
cnfldtop |
|- J e. Top |
6 |
|
cnex |
|- CC e. _V |
7 |
|
ssexg |
|- ( ( S C_ CC /\ CC e. _V ) -> S e. _V ) |
8 |
1 6 7
|
sylancl |
|- ( ph -> S e. _V ) |
9 |
|
resttop |
|- ( ( J e. Top /\ S e. _V ) -> ( J |`t S ) e. Top ) |
10 |
5 8 9
|
sylancr |
|- ( ph -> ( J |`t S ) e. Top ) |
11 |
4 10
|
eqeltrid |
|- ( ph -> K e. Top ) |
12 |
3
|
dfii3 |
|- II = ( J |`t ( 0 [,] 1 ) ) |
13 |
3
|
cnfldtopon |
|- J e. ( TopOn ` CC ) |
14 |
13
|
a1i |
|- ( ( ph /\ ( y e. S /\ x e. S ) ) -> J e. ( TopOn ` CC ) ) |
15 |
|
unitsscn |
|- ( 0 [,] 1 ) C_ CC |
16 |
15
|
a1i |
|- ( ( ph /\ ( y e. S /\ x e. S ) ) -> ( 0 [,] 1 ) C_ CC ) |
17 |
13
|
a1i |
|- ( ( ph /\ x e. S ) -> J e. ( TopOn ` CC ) ) |
18 |
17
|
cnmptid |
|- ( ( ph /\ x e. S ) -> ( t e. CC |-> t ) e. ( J Cn J ) ) |
19 |
1
|
sselda |
|- ( ( ph /\ x e. S ) -> x e. CC ) |
20 |
17 17 19
|
cnmptc |
|- ( ( ph /\ x e. S ) -> ( t e. CC |-> x ) e. ( J Cn J ) ) |
21 |
3
|
mpomulcn |
|- ( u e. CC , v e. CC |-> ( u x. v ) ) e. ( ( J tX J ) Cn J ) |
22 |
21
|
a1i |
|- ( ( ph /\ x e. S ) -> ( u e. CC , v e. CC |-> ( u x. v ) ) e. ( ( J tX J ) Cn J ) ) |
23 |
|
oveq12 |
|- ( ( u = t /\ v = x ) -> ( u x. v ) = ( t x. x ) ) |
24 |
17 18 20 17 17 22 23
|
cnmpt12 |
|- ( ( ph /\ x e. S ) -> ( t e. CC |-> ( t x. x ) ) e. ( J Cn J ) ) |
25 |
24
|
adantrl |
|- ( ( ph /\ ( y e. S /\ x e. S ) ) -> ( t e. CC |-> ( t x. x ) ) e. ( J Cn J ) ) |
26 |
13
|
a1i |
|- ( ph -> J e. ( TopOn ` CC ) ) |
27 |
|
1cnd |
|- ( ph -> 1 e. CC ) |
28 |
26 26 27
|
cnmptc |
|- ( ph -> ( t e. CC |-> 1 ) e. ( J Cn J ) ) |
29 |
3
|
cncfcn1 |
|- ( CC -cn-> CC ) = ( J Cn J ) |
30 |
28 29
|
eleqtrrdi |
|- ( ph -> ( t e. CC |-> 1 ) e. ( CC -cn-> CC ) ) |
31 |
26
|
cnmptid |
|- ( ph -> ( t e. CC |-> t ) e. ( J Cn J ) ) |
32 |
31 29
|
eleqtrrdi |
|- ( ph -> ( t e. CC |-> t ) e. ( CC -cn-> CC ) ) |
33 |
30 32
|
subcncf |
|- ( ph -> ( t e. CC |-> ( 1 - t ) ) e. ( CC -cn-> CC ) ) |
34 |
33 29
|
eleqtrdi |
|- ( ph -> ( t e. CC |-> ( 1 - t ) ) e. ( J Cn J ) ) |
35 |
34
|
adantr |
|- ( ( ph /\ ( y e. S /\ x e. S ) ) -> ( t e. CC |-> ( 1 - t ) ) e. ( J Cn J ) ) |
36 |
1
|
adantr |
|- ( ( ph /\ ( y e. S /\ x e. S ) ) -> S C_ CC ) |
37 |
|
simprl |
|- ( ( ph /\ ( y e. S /\ x e. S ) ) -> y e. S ) |
38 |
36 37
|
sseldd |
|- ( ( ph /\ ( y e. S /\ x e. S ) ) -> y e. CC ) |
39 |
14 14 38
|
cnmptc |
|- ( ( ph /\ ( y e. S /\ x e. S ) ) -> ( t e. CC |-> y ) e. ( J Cn J ) ) |
40 |
21
|
a1i |
|- ( ( ph /\ ( y e. S /\ x e. S ) ) -> ( u e. CC , v e. CC |-> ( u x. v ) ) e. ( ( J tX J ) Cn J ) ) |
41 |
|
oveq12 |
|- ( ( u = ( 1 - t ) /\ v = y ) -> ( u x. v ) = ( ( 1 - t ) x. y ) ) |
42 |
14 35 39 14 14 40 41
|
cnmpt12 |
|- ( ( ph /\ ( y e. S /\ x e. S ) ) -> ( t e. CC |-> ( ( 1 - t ) x. y ) ) e. ( J Cn J ) ) |
43 |
3
|
addcn |
|- + e. ( ( J tX J ) Cn J ) |
44 |
43
|
a1i |
|- ( ( ph /\ ( y e. S /\ x e. S ) ) -> + e. ( ( J tX J ) Cn J ) ) |
45 |
14 25 42 44
|
cnmpt12f |
|- ( ( ph /\ ( y e. S /\ x e. S ) ) -> ( t e. CC |-> ( ( t x. x ) + ( ( 1 - t ) x. y ) ) ) e. ( J Cn J ) ) |
46 |
12 14 16 45
|
cnmpt1res |
|- ( ( ph /\ ( y e. S /\ x e. S ) ) -> ( t e. ( 0 [,] 1 ) |-> ( ( t x. x ) + ( ( 1 - t ) x. y ) ) ) e. ( II Cn J ) ) |
47 |
2
|
3exp2 |
|- ( ph -> ( x e. S -> ( y e. S -> ( t e. ( 0 [,] 1 ) -> ( ( t x. x ) + ( ( 1 - t ) x. y ) ) e. S ) ) ) ) |
48 |
47
|
com23 |
|- ( ph -> ( y e. S -> ( x e. S -> ( t e. ( 0 [,] 1 ) -> ( ( t x. x ) + ( ( 1 - t ) x. y ) ) e. S ) ) ) ) |
49 |
48
|
imp42 |
|- ( ( ( ph /\ ( y e. S /\ x e. S ) ) /\ t e. ( 0 [,] 1 ) ) -> ( ( t x. x ) + ( ( 1 - t ) x. y ) ) e. S ) |
50 |
49
|
fmpttd |
|- ( ( ph /\ ( y e. S /\ x e. S ) ) -> ( t e. ( 0 [,] 1 ) |-> ( ( t x. x ) + ( ( 1 - t ) x. y ) ) ) : ( 0 [,] 1 ) --> S ) |
51 |
50
|
frnd |
|- ( ( ph /\ ( y e. S /\ x e. S ) ) -> ran ( t e. ( 0 [,] 1 ) |-> ( ( t x. x ) + ( ( 1 - t ) x. y ) ) ) C_ S ) |
52 |
|
cnrest2 |
|- ( ( J e. ( TopOn ` CC ) /\ ran ( t e. ( 0 [,] 1 ) |-> ( ( t x. x ) + ( ( 1 - t ) x. y ) ) ) C_ S /\ S C_ CC ) -> ( ( t e. ( 0 [,] 1 ) |-> ( ( t x. x ) + ( ( 1 - t ) x. y ) ) ) e. ( II Cn J ) <-> ( t e. ( 0 [,] 1 ) |-> ( ( t x. x ) + ( ( 1 - t ) x. y ) ) ) e. ( II Cn ( J |`t S ) ) ) ) |
53 |
13 51 36 52
|
mp3an2i |
|- ( ( ph /\ ( y e. S /\ x e. S ) ) -> ( ( t e. ( 0 [,] 1 ) |-> ( ( t x. x ) + ( ( 1 - t ) x. y ) ) ) e. ( II Cn J ) <-> ( t e. ( 0 [,] 1 ) |-> ( ( t x. x ) + ( ( 1 - t ) x. y ) ) ) e. ( II Cn ( J |`t S ) ) ) ) |
54 |
46 53
|
mpbid |
|- ( ( ph /\ ( y e. S /\ x e. S ) ) -> ( t e. ( 0 [,] 1 ) |-> ( ( t x. x ) + ( ( 1 - t ) x. y ) ) ) e. ( II Cn ( J |`t S ) ) ) |
55 |
4
|
oveq2i |
|- ( II Cn K ) = ( II Cn ( J |`t S ) ) |
56 |
54 55
|
eleqtrrdi |
|- ( ( ph /\ ( y e. S /\ x e. S ) ) -> ( t e. ( 0 [,] 1 ) |-> ( ( t x. x ) + ( ( 1 - t ) x. y ) ) ) e. ( II Cn K ) ) |
57 |
|
0elunit |
|- 0 e. ( 0 [,] 1 ) |
58 |
|
oveq1 |
|- ( t = 0 -> ( t x. x ) = ( 0 x. x ) ) |
59 |
|
oveq2 |
|- ( t = 0 -> ( 1 - t ) = ( 1 - 0 ) ) |
60 |
|
1m0e1 |
|- ( 1 - 0 ) = 1 |
61 |
59 60
|
eqtrdi |
|- ( t = 0 -> ( 1 - t ) = 1 ) |
62 |
61
|
oveq1d |
|- ( t = 0 -> ( ( 1 - t ) x. y ) = ( 1 x. y ) ) |
63 |
58 62
|
oveq12d |
|- ( t = 0 -> ( ( t x. x ) + ( ( 1 - t ) x. y ) ) = ( ( 0 x. x ) + ( 1 x. y ) ) ) |
64 |
|
eqid |
|- ( t e. ( 0 [,] 1 ) |-> ( ( t x. x ) + ( ( 1 - t ) x. y ) ) ) = ( t e. ( 0 [,] 1 ) |-> ( ( t x. x ) + ( ( 1 - t ) x. y ) ) ) |
65 |
|
ovex |
|- ( ( 0 x. x ) + ( 1 x. y ) ) e. _V |
66 |
63 64 65
|
fvmpt |
|- ( 0 e. ( 0 [,] 1 ) -> ( ( t e. ( 0 [,] 1 ) |-> ( ( t x. x ) + ( ( 1 - t ) x. y ) ) ) ` 0 ) = ( ( 0 x. x ) + ( 1 x. y ) ) ) |
67 |
57 66
|
ax-mp |
|- ( ( t e. ( 0 [,] 1 ) |-> ( ( t x. x ) + ( ( 1 - t ) x. y ) ) ) ` 0 ) = ( ( 0 x. x ) + ( 1 x. y ) ) |
68 |
19
|
adantrl |
|- ( ( ph /\ ( y e. S /\ x e. S ) ) -> x e. CC ) |
69 |
68
|
mul02d |
|- ( ( ph /\ ( y e. S /\ x e. S ) ) -> ( 0 x. x ) = 0 ) |
70 |
38
|
mullidd |
|- ( ( ph /\ ( y e. S /\ x e. S ) ) -> ( 1 x. y ) = y ) |
71 |
69 70
|
oveq12d |
|- ( ( ph /\ ( y e. S /\ x e. S ) ) -> ( ( 0 x. x ) + ( 1 x. y ) ) = ( 0 + y ) ) |
72 |
38
|
addlidd |
|- ( ( ph /\ ( y e. S /\ x e. S ) ) -> ( 0 + y ) = y ) |
73 |
71 72
|
eqtrd |
|- ( ( ph /\ ( y e. S /\ x e. S ) ) -> ( ( 0 x. x ) + ( 1 x. y ) ) = y ) |
74 |
67 73
|
eqtrid |
|- ( ( ph /\ ( y e. S /\ x e. S ) ) -> ( ( t e. ( 0 [,] 1 ) |-> ( ( t x. x ) + ( ( 1 - t ) x. y ) ) ) ` 0 ) = y ) |
75 |
|
1elunit |
|- 1 e. ( 0 [,] 1 ) |
76 |
|
oveq1 |
|- ( t = 1 -> ( t x. x ) = ( 1 x. x ) ) |
77 |
|
oveq2 |
|- ( t = 1 -> ( 1 - t ) = ( 1 - 1 ) ) |
78 |
|
1m1e0 |
|- ( 1 - 1 ) = 0 |
79 |
77 78
|
eqtrdi |
|- ( t = 1 -> ( 1 - t ) = 0 ) |
80 |
79
|
oveq1d |
|- ( t = 1 -> ( ( 1 - t ) x. y ) = ( 0 x. y ) ) |
81 |
76 80
|
oveq12d |
|- ( t = 1 -> ( ( t x. x ) + ( ( 1 - t ) x. y ) ) = ( ( 1 x. x ) + ( 0 x. y ) ) ) |
82 |
|
ovex |
|- ( ( 1 x. x ) + ( 0 x. y ) ) e. _V |
83 |
81 64 82
|
fvmpt |
|- ( 1 e. ( 0 [,] 1 ) -> ( ( t e. ( 0 [,] 1 ) |-> ( ( t x. x ) + ( ( 1 - t ) x. y ) ) ) ` 1 ) = ( ( 1 x. x ) + ( 0 x. y ) ) ) |
84 |
75 83
|
ax-mp |
|- ( ( t e. ( 0 [,] 1 ) |-> ( ( t x. x ) + ( ( 1 - t ) x. y ) ) ) ` 1 ) = ( ( 1 x. x ) + ( 0 x. y ) ) |
85 |
68
|
mullidd |
|- ( ( ph /\ ( y e. S /\ x e. S ) ) -> ( 1 x. x ) = x ) |
86 |
38
|
mul02d |
|- ( ( ph /\ ( y e. S /\ x e. S ) ) -> ( 0 x. y ) = 0 ) |
87 |
85 86
|
oveq12d |
|- ( ( ph /\ ( y e. S /\ x e. S ) ) -> ( ( 1 x. x ) + ( 0 x. y ) ) = ( x + 0 ) ) |
88 |
68
|
addridd |
|- ( ( ph /\ ( y e. S /\ x e. S ) ) -> ( x + 0 ) = x ) |
89 |
87 88
|
eqtrd |
|- ( ( ph /\ ( y e. S /\ x e. S ) ) -> ( ( 1 x. x ) + ( 0 x. y ) ) = x ) |
90 |
84 89
|
eqtrid |
|- ( ( ph /\ ( y e. S /\ x e. S ) ) -> ( ( t e. ( 0 [,] 1 ) |-> ( ( t x. x ) + ( ( 1 - t ) x. y ) ) ) ` 1 ) = x ) |
91 |
|
fveq1 |
|- ( f = ( t e. ( 0 [,] 1 ) |-> ( ( t x. x ) + ( ( 1 - t ) x. y ) ) ) -> ( f ` 0 ) = ( ( t e. ( 0 [,] 1 ) |-> ( ( t x. x ) + ( ( 1 - t ) x. y ) ) ) ` 0 ) ) |
92 |
91
|
eqeq1d |
|- ( f = ( t e. ( 0 [,] 1 ) |-> ( ( t x. x ) + ( ( 1 - t ) x. y ) ) ) -> ( ( f ` 0 ) = y <-> ( ( t e. ( 0 [,] 1 ) |-> ( ( t x. x ) + ( ( 1 - t ) x. y ) ) ) ` 0 ) = y ) ) |
93 |
|
fveq1 |
|- ( f = ( t e. ( 0 [,] 1 ) |-> ( ( t x. x ) + ( ( 1 - t ) x. y ) ) ) -> ( f ` 1 ) = ( ( t e. ( 0 [,] 1 ) |-> ( ( t x. x ) + ( ( 1 - t ) x. y ) ) ) ` 1 ) ) |
94 |
93
|
eqeq1d |
|- ( f = ( t e. ( 0 [,] 1 ) |-> ( ( t x. x ) + ( ( 1 - t ) x. y ) ) ) -> ( ( f ` 1 ) = x <-> ( ( t e. ( 0 [,] 1 ) |-> ( ( t x. x ) + ( ( 1 - t ) x. y ) ) ) ` 1 ) = x ) ) |
95 |
92 94
|
anbi12d |
|- ( f = ( t e. ( 0 [,] 1 ) |-> ( ( t x. x ) + ( ( 1 - t ) x. y ) ) ) -> ( ( ( f ` 0 ) = y /\ ( f ` 1 ) = x ) <-> ( ( ( t e. ( 0 [,] 1 ) |-> ( ( t x. x ) + ( ( 1 - t ) x. y ) ) ) ` 0 ) = y /\ ( ( t e. ( 0 [,] 1 ) |-> ( ( t x. x ) + ( ( 1 - t ) x. y ) ) ) ` 1 ) = x ) ) ) |
96 |
95
|
rspcev |
|- ( ( ( t e. ( 0 [,] 1 ) |-> ( ( t x. x ) + ( ( 1 - t ) x. y ) ) ) e. ( II Cn K ) /\ ( ( ( t e. ( 0 [,] 1 ) |-> ( ( t x. x ) + ( ( 1 - t ) x. y ) ) ) ` 0 ) = y /\ ( ( t e. ( 0 [,] 1 ) |-> ( ( t x. x ) + ( ( 1 - t ) x. y ) ) ) ` 1 ) = x ) ) -> E. f e. ( II Cn K ) ( ( f ` 0 ) = y /\ ( f ` 1 ) = x ) ) |
97 |
56 74 90 96
|
syl12anc |
|- ( ( ph /\ ( y e. S /\ x e. S ) ) -> E. f e. ( II Cn K ) ( ( f ` 0 ) = y /\ ( f ` 1 ) = x ) ) |
98 |
97
|
ralrimivva |
|- ( ph -> A. y e. S A. x e. S E. f e. ( II Cn K ) ( ( f ` 0 ) = y /\ ( f ` 1 ) = x ) ) |
99 |
|
resttopon |
|- ( ( J e. ( TopOn ` CC ) /\ S C_ CC ) -> ( J |`t S ) e. ( TopOn ` S ) ) |
100 |
13 1 99
|
sylancr |
|- ( ph -> ( J |`t S ) e. ( TopOn ` S ) ) |
101 |
4 100
|
eqeltrid |
|- ( ph -> K e. ( TopOn ` S ) ) |
102 |
|
toponuni |
|- ( K e. ( TopOn ` S ) -> S = U. K ) |
103 |
101 102
|
syl |
|- ( ph -> S = U. K ) |
104 |
103
|
raleqdv |
|- ( ph -> ( A. x e. S E. f e. ( II Cn K ) ( ( f ` 0 ) = y /\ ( f ` 1 ) = x ) <-> A. x e. U. K E. f e. ( II Cn K ) ( ( f ` 0 ) = y /\ ( f ` 1 ) = x ) ) ) |
105 |
103 104
|
raleqbidv |
|- ( ph -> ( A. y e. S A. x e. S E. f e. ( II Cn K ) ( ( f ` 0 ) = y /\ ( f ` 1 ) = x ) <-> A. y e. U. K A. x e. U. K E. f e. ( II Cn K ) ( ( f ` 0 ) = y /\ ( f ` 1 ) = x ) ) ) |
106 |
98 105
|
mpbid |
|- ( ph -> A. y e. U. K A. x e. U. K E. f e. ( II Cn K ) ( ( f ` 0 ) = y /\ ( f ` 1 ) = x ) ) |
107 |
|
eqid |
|- U. K = U. K |
108 |
107
|
ispconn |
|- ( K e. PConn <-> ( K e. Top /\ A. y e. U. K A. x e. U. K E. f e. ( II Cn K ) ( ( f ` 0 ) = y /\ ( f ` 1 ) = x ) ) ) |
109 |
11 106 108
|
sylanbrc |
|- ( ph -> K e. PConn ) |