| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cvxpconn.1 |
⊢ ( 𝜑 → 𝑆 ⊆ ℂ ) |
| 2 |
|
cvxpconn.2 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑡 ∈ ( 0 [,] 1 ) ) ) → ( ( 𝑡 · 𝑥 ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) ∈ 𝑆 ) |
| 3 |
|
cvxpconn.3 |
⊢ 𝐽 = ( TopOpen ‘ ℂfld ) |
| 4 |
|
cvxpconn.4 |
⊢ 𝐾 = ( 𝐽 ↾t 𝑆 ) |
| 5 |
3
|
cnfldtop |
⊢ 𝐽 ∈ Top |
| 6 |
|
cnex |
⊢ ℂ ∈ V |
| 7 |
|
ssexg |
⊢ ( ( 𝑆 ⊆ ℂ ∧ ℂ ∈ V ) → 𝑆 ∈ V ) |
| 8 |
1 6 7
|
sylancl |
⊢ ( 𝜑 → 𝑆 ∈ V ) |
| 9 |
|
resttop |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ∈ V ) → ( 𝐽 ↾t 𝑆 ) ∈ Top ) |
| 10 |
5 8 9
|
sylancr |
⊢ ( 𝜑 → ( 𝐽 ↾t 𝑆 ) ∈ Top ) |
| 11 |
4 10
|
eqeltrid |
⊢ ( 𝜑 → 𝐾 ∈ Top ) |
| 12 |
3
|
dfii3 |
⊢ II = ( 𝐽 ↾t ( 0 [,] 1 ) ) |
| 13 |
3
|
cnfldtopon |
⊢ 𝐽 ∈ ( TopOn ‘ ℂ ) |
| 14 |
13
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆 ) ) → 𝐽 ∈ ( TopOn ‘ ℂ ) ) |
| 15 |
|
unitsscn |
⊢ ( 0 [,] 1 ) ⊆ ℂ |
| 16 |
15
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆 ) ) → ( 0 [,] 1 ) ⊆ ℂ ) |
| 17 |
13
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → 𝐽 ∈ ( TopOn ‘ ℂ ) ) |
| 18 |
17
|
cnmptid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → ( 𝑡 ∈ ℂ ↦ 𝑡 ) ∈ ( 𝐽 Cn 𝐽 ) ) |
| 19 |
1
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → 𝑥 ∈ ℂ ) |
| 20 |
17 17 19
|
cnmptc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → ( 𝑡 ∈ ℂ ↦ 𝑥 ) ∈ ( 𝐽 Cn 𝐽 ) ) |
| 21 |
3
|
mpomulcn |
⊢ ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) |
| 22 |
21
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) ) |
| 23 |
|
oveq12 |
⊢ ( ( 𝑢 = 𝑡 ∧ 𝑣 = 𝑥 ) → ( 𝑢 · 𝑣 ) = ( 𝑡 · 𝑥 ) ) |
| 24 |
17 18 20 17 17 22 23
|
cnmpt12 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → ( 𝑡 ∈ ℂ ↦ ( 𝑡 · 𝑥 ) ) ∈ ( 𝐽 Cn 𝐽 ) ) |
| 25 |
24
|
adantrl |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆 ) ) → ( 𝑡 ∈ ℂ ↦ ( 𝑡 · 𝑥 ) ) ∈ ( 𝐽 Cn 𝐽 ) ) |
| 26 |
13
|
a1i |
⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ ℂ ) ) |
| 27 |
|
1cnd |
⊢ ( 𝜑 → 1 ∈ ℂ ) |
| 28 |
26 26 27
|
cnmptc |
⊢ ( 𝜑 → ( 𝑡 ∈ ℂ ↦ 1 ) ∈ ( 𝐽 Cn 𝐽 ) ) |
| 29 |
3
|
cncfcn1 |
⊢ ( ℂ –cn→ ℂ ) = ( 𝐽 Cn 𝐽 ) |
| 30 |
28 29
|
eleqtrrdi |
⊢ ( 𝜑 → ( 𝑡 ∈ ℂ ↦ 1 ) ∈ ( ℂ –cn→ ℂ ) ) |
| 31 |
26
|
cnmptid |
⊢ ( 𝜑 → ( 𝑡 ∈ ℂ ↦ 𝑡 ) ∈ ( 𝐽 Cn 𝐽 ) ) |
| 32 |
31 29
|
eleqtrrdi |
⊢ ( 𝜑 → ( 𝑡 ∈ ℂ ↦ 𝑡 ) ∈ ( ℂ –cn→ ℂ ) ) |
| 33 |
30 32
|
subcncf |
⊢ ( 𝜑 → ( 𝑡 ∈ ℂ ↦ ( 1 − 𝑡 ) ) ∈ ( ℂ –cn→ ℂ ) ) |
| 34 |
33 29
|
eleqtrdi |
⊢ ( 𝜑 → ( 𝑡 ∈ ℂ ↦ ( 1 − 𝑡 ) ) ∈ ( 𝐽 Cn 𝐽 ) ) |
| 35 |
34
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆 ) ) → ( 𝑡 ∈ ℂ ↦ ( 1 − 𝑡 ) ) ∈ ( 𝐽 Cn 𝐽 ) ) |
| 36 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆 ) ) → 𝑆 ⊆ ℂ ) |
| 37 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆 ) ) → 𝑦 ∈ 𝑆 ) |
| 38 |
36 37
|
sseldd |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆 ) ) → 𝑦 ∈ ℂ ) |
| 39 |
14 14 38
|
cnmptc |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆 ) ) → ( 𝑡 ∈ ℂ ↦ 𝑦 ) ∈ ( 𝐽 Cn 𝐽 ) ) |
| 40 |
21
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆 ) ) → ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) ) |
| 41 |
|
oveq12 |
⊢ ( ( 𝑢 = ( 1 − 𝑡 ) ∧ 𝑣 = 𝑦 ) → ( 𝑢 · 𝑣 ) = ( ( 1 − 𝑡 ) · 𝑦 ) ) |
| 42 |
14 35 39 14 14 40 41
|
cnmpt12 |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆 ) ) → ( 𝑡 ∈ ℂ ↦ ( ( 1 − 𝑡 ) · 𝑦 ) ) ∈ ( 𝐽 Cn 𝐽 ) ) |
| 43 |
3
|
addcn |
⊢ + ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) |
| 44 |
43
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆 ) ) → + ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) ) |
| 45 |
14 25 42 44
|
cnmpt12f |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆 ) ) → ( 𝑡 ∈ ℂ ↦ ( ( 𝑡 · 𝑥 ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) ) ∈ ( 𝐽 Cn 𝐽 ) ) |
| 46 |
12 14 16 45
|
cnmpt1res |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆 ) ) → ( 𝑡 ∈ ( 0 [,] 1 ) ↦ ( ( 𝑡 · 𝑥 ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) ) ∈ ( II Cn 𝐽 ) ) |
| 47 |
2
|
3exp2 |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑆 → ( 𝑦 ∈ 𝑆 → ( 𝑡 ∈ ( 0 [,] 1 ) → ( ( 𝑡 · 𝑥 ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) ∈ 𝑆 ) ) ) ) |
| 48 |
47
|
com23 |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝑆 → ( 𝑥 ∈ 𝑆 → ( 𝑡 ∈ ( 0 [,] 1 ) → ( ( 𝑡 · 𝑥 ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) ∈ 𝑆 ) ) ) ) |
| 49 |
48
|
imp42 |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆 ) ) ∧ 𝑡 ∈ ( 0 [,] 1 ) ) → ( ( 𝑡 · 𝑥 ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) ∈ 𝑆 ) |
| 50 |
49
|
fmpttd |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆 ) ) → ( 𝑡 ∈ ( 0 [,] 1 ) ↦ ( ( 𝑡 · 𝑥 ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) ) : ( 0 [,] 1 ) ⟶ 𝑆 ) |
| 51 |
50
|
frnd |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆 ) ) → ran ( 𝑡 ∈ ( 0 [,] 1 ) ↦ ( ( 𝑡 · 𝑥 ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) ) ⊆ 𝑆 ) |
| 52 |
|
cnrest2 |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ ℂ ) ∧ ran ( 𝑡 ∈ ( 0 [,] 1 ) ↦ ( ( 𝑡 · 𝑥 ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) ) ⊆ 𝑆 ∧ 𝑆 ⊆ ℂ ) → ( ( 𝑡 ∈ ( 0 [,] 1 ) ↦ ( ( 𝑡 · 𝑥 ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) ) ∈ ( II Cn 𝐽 ) ↔ ( 𝑡 ∈ ( 0 [,] 1 ) ↦ ( ( 𝑡 · 𝑥 ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) ) ∈ ( II Cn ( 𝐽 ↾t 𝑆 ) ) ) ) |
| 53 |
13 51 36 52
|
mp3an2i |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆 ) ) → ( ( 𝑡 ∈ ( 0 [,] 1 ) ↦ ( ( 𝑡 · 𝑥 ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) ) ∈ ( II Cn 𝐽 ) ↔ ( 𝑡 ∈ ( 0 [,] 1 ) ↦ ( ( 𝑡 · 𝑥 ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) ) ∈ ( II Cn ( 𝐽 ↾t 𝑆 ) ) ) ) |
| 54 |
46 53
|
mpbid |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆 ) ) → ( 𝑡 ∈ ( 0 [,] 1 ) ↦ ( ( 𝑡 · 𝑥 ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) ) ∈ ( II Cn ( 𝐽 ↾t 𝑆 ) ) ) |
| 55 |
4
|
oveq2i |
⊢ ( II Cn 𝐾 ) = ( II Cn ( 𝐽 ↾t 𝑆 ) ) |
| 56 |
54 55
|
eleqtrrdi |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆 ) ) → ( 𝑡 ∈ ( 0 [,] 1 ) ↦ ( ( 𝑡 · 𝑥 ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) ) ∈ ( II Cn 𝐾 ) ) |
| 57 |
|
0elunit |
⊢ 0 ∈ ( 0 [,] 1 ) |
| 58 |
|
oveq1 |
⊢ ( 𝑡 = 0 → ( 𝑡 · 𝑥 ) = ( 0 · 𝑥 ) ) |
| 59 |
|
oveq2 |
⊢ ( 𝑡 = 0 → ( 1 − 𝑡 ) = ( 1 − 0 ) ) |
| 60 |
|
1m0e1 |
⊢ ( 1 − 0 ) = 1 |
| 61 |
59 60
|
eqtrdi |
⊢ ( 𝑡 = 0 → ( 1 − 𝑡 ) = 1 ) |
| 62 |
61
|
oveq1d |
⊢ ( 𝑡 = 0 → ( ( 1 − 𝑡 ) · 𝑦 ) = ( 1 · 𝑦 ) ) |
| 63 |
58 62
|
oveq12d |
⊢ ( 𝑡 = 0 → ( ( 𝑡 · 𝑥 ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) = ( ( 0 · 𝑥 ) + ( 1 · 𝑦 ) ) ) |
| 64 |
|
eqid |
⊢ ( 𝑡 ∈ ( 0 [,] 1 ) ↦ ( ( 𝑡 · 𝑥 ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) ) = ( 𝑡 ∈ ( 0 [,] 1 ) ↦ ( ( 𝑡 · 𝑥 ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) ) |
| 65 |
|
ovex |
⊢ ( ( 0 · 𝑥 ) + ( 1 · 𝑦 ) ) ∈ V |
| 66 |
63 64 65
|
fvmpt |
⊢ ( 0 ∈ ( 0 [,] 1 ) → ( ( 𝑡 ∈ ( 0 [,] 1 ) ↦ ( ( 𝑡 · 𝑥 ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) ) ‘ 0 ) = ( ( 0 · 𝑥 ) + ( 1 · 𝑦 ) ) ) |
| 67 |
57 66
|
ax-mp |
⊢ ( ( 𝑡 ∈ ( 0 [,] 1 ) ↦ ( ( 𝑡 · 𝑥 ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) ) ‘ 0 ) = ( ( 0 · 𝑥 ) + ( 1 · 𝑦 ) ) |
| 68 |
19
|
adantrl |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆 ) ) → 𝑥 ∈ ℂ ) |
| 69 |
68
|
mul02d |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆 ) ) → ( 0 · 𝑥 ) = 0 ) |
| 70 |
38
|
mullidd |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆 ) ) → ( 1 · 𝑦 ) = 𝑦 ) |
| 71 |
69 70
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆 ) ) → ( ( 0 · 𝑥 ) + ( 1 · 𝑦 ) ) = ( 0 + 𝑦 ) ) |
| 72 |
38
|
addlidd |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆 ) ) → ( 0 + 𝑦 ) = 𝑦 ) |
| 73 |
71 72
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆 ) ) → ( ( 0 · 𝑥 ) + ( 1 · 𝑦 ) ) = 𝑦 ) |
| 74 |
67 73
|
eqtrid |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆 ) ) → ( ( 𝑡 ∈ ( 0 [,] 1 ) ↦ ( ( 𝑡 · 𝑥 ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) ) ‘ 0 ) = 𝑦 ) |
| 75 |
|
1elunit |
⊢ 1 ∈ ( 0 [,] 1 ) |
| 76 |
|
oveq1 |
⊢ ( 𝑡 = 1 → ( 𝑡 · 𝑥 ) = ( 1 · 𝑥 ) ) |
| 77 |
|
oveq2 |
⊢ ( 𝑡 = 1 → ( 1 − 𝑡 ) = ( 1 − 1 ) ) |
| 78 |
|
1m1e0 |
⊢ ( 1 − 1 ) = 0 |
| 79 |
77 78
|
eqtrdi |
⊢ ( 𝑡 = 1 → ( 1 − 𝑡 ) = 0 ) |
| 80 |
79
|
oveq1d |
⊢ ( 𝑡 = 1 → ( ( 1 − 𝑡 ) · 𝑦 ) = ( 0 · 𝑦 ) ) |
| 81 |
76 80
|
oveq12d |
⊢ ( 𝑡 = 1 → ( ( 𝑡 · 𝑥 ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) = ( ( 1 · 𝑥 ) + ( 0 · 𝑦 ) ) ) |
| 82 |
|
ovex |
⊢ ( ( 1 · 𝑥 ) + ( 0 · 𝑦 ) ) ∈ V |
| 83 |
81 64 82
|
fvmpt |
⊢ ( 1 ∈ ( 0 [,] 1 ) → ( ( 𝑡 ∈ ( 0 [,] 1 ) ↦ ( ( 𝑡 · 𝑥 ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) ) ‘ 1 ) = ( ( 1 · 𝑥 ) + ( 0 · 𝑦 ) ) ) |
| 84 |
75 83
|
ax-mp |
⊢ ( ( 𝑡 ∈ ( 0 [,] 1 ) ↦ ( ( 𝑡 · 𝑥 ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) ) ‘ 1 ) = ( ( 1 · 𝑥 ) + ( 0 · 𝑦 ) ) |
| 85 |
68
|
mullidd |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆 ) ) → ( 1 · 𝑥 ) = 𝑥 ) |
| 86 |
38
|
mul02d |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆 ) ) → ( 0 · 𝑦 ) = 0 ) |
| 87 |
85 86
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆 ) ) → ( ( 1 · 𝑥 ) + ( 0 · 𝑦 ) ) = ( 𝑥 + 0 ) ) |
| 88 |
68
|
addridd |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆 ) ) → ( 𝑥 + 0 ) = 𝑥 ) |
| 89 |
87 88
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆 ) ) → ( ( 1 · 𝑥 ) + ( 0 · 𝑦 ) ) = 𝑥 ) |
| 90 |
84 89
|
eqtrid |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆 ) ) → ( ( 𝑡 ∈ ( 0 [,] 1 ) ↦ ( ( 𝑡 · 𝑥 ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) ) ‘ 1 ) = 𝑥 ) |
| 91 |
|
fveq1 |
⊢ ( 𝑓 = ( 𝑡 ∈ ( 0 [,] 1 ) ↦ ( ( 𝑡 · 𝑥 ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) ) → ( 𝑓 ‘ 0 ) = ( ( 𝑡 ∈ ( 0 [,] 1 ) ↦ ( ( 𝑡 · 𝑥 ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) ) ‘ 0 ) ) |
| 92 |
91
|
eqeq1d |
⊢ ( 𝑓 = ( 𝑡 ∈ ( 0 [,] 1 ) ↦ ( ( 𝑡 · 𝑥 ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) ) → ( ( 𝑓 ‘ 0 ) = 𝑦 ↔ ( ( 𝑡 ∈ ( 0 [,] 1 ) ↦ ( ( 𝑡 · 𝑥 ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) ) ‘ 0 ) = 𝑦 ) ) |
| 93 |
|
fveq1 |
⊢ ( 𝑓 = ( 𝑡 ∈ ( 0 [,] 1 ) ↦ ( ( 𝑡 · 𝑥 ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) ) → ( 𝑓 ‘ 1 ) = ( ( 𝑡 ∈ ( 0 [,] 1 ) ↦ ( ( 𝑡 · 𝑥 ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) ) ‘ 1 ) ) |
| 94 |
93
|
eqeq1d |
⊢ ( 𝑓 = ( 𝑡 ∈ ( 0 [,] 1 ) ↦ ( ( 𝑡 · 𝑥 ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) ) → ( ( 𝑓 ‘ 1 ) = 𝑥 ↔ ( ( 𝑡 ∈ ( 0 [,] 1 ) ↦ ( ( 𝑡 · 𝑥 ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) ) ‘ 1 ) = 𝑥 ) ) |
| 95 |
92 94
|
anbi12d |
⊢ ( 𝑓 = ( 𝑡 ∈ ( 0 [,] 1 ) ↦ ( ( 𝑡 · 𝑥 ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) ) → ( ( ( 𝑓 ‘ 0 ) = 𝑦 ∧ ( 𝑓 ‘ 1 ) = 𝑥 ) ↔ ( ( ( 𝑡 ∈ ( 0 [,] 1 ) ↦ ( ( 𝑡 · 𝑥 ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) ) ‘ 0 ) = 𝑦 ∧ ( ( 𝑡 ∈ ( 0 [,] 1 ) ↦ ( ( 𝑡 · 𝑥 ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) ) ‘ 1 ) = 𝑥 ) ) ) |
| 96 |
95
|
rspcev |
⊢ ( ( ( 𝑡 ∈ ( 0 [,] 1 ) ↦ ( ( 𝑡 · 𝑥 ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) ) ∈ ( II Cn 𝐾 ) ∧ ( ( ( 𝑡 ∈ ( 0 [,] 1 ) ↦ ( ( 𝑡 · 𝑥 ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) ) ‘ 0 ) = 𝑦 ∧ ( ( 𝑡 ∈ ( 0 [,] 1 ) ↦ ( ( 𝑡 · 𝑥 ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) ) ‘ 1 ) = 𝑥 ) ) → ∃ 𝑓 ∈ ( II Cn 𝐾 ) ( ( 𝑓 ‘ 0 ) = 𝑦 ∧ ( 𝑓 ‘ 1 ) = 𝑥 ) ) |
| 97 |
56 74 90 96
|
syl12anc |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆 ) ) → ∃ 𝑓 ∈ ( II Cn 𝐾 ) ( ( 𝑓 ‘ 0 ) = 𝑦 ∧ ( 𝑓 ‘ 1 ) = 𝑥 ) ) |
| 98 |
97
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝑆 ∀ 𝑥 ∈ 𝑆 ∃ 𝑓 ∈ ( II Cn 𝐾 ) ( ( 𝑓 ‘ 0 ) = 𝑦 ∧ ( 𝑓 ‘ 1 ) = 𝑥 ) ) |
| 99 |
|
resttopon |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ ℂ ) ∧ 𝑆 ⊆ ℂ ) → ( 𝐽 ↾t 𝑆 ) ∈ ( TopOn ‘ 𝑆 ) ) |
| 100 |
13 1 99
|
sylancr |
⊢ ( 𝜑 → ( 𝐽 ↾t 𝑆 ) ∈ ( TopOn ‘ 𝑆 ) ) |
| 101 |
4 100
|
eqeltrid |
⊢ ( 𝜑 → 𝐾 ∈ ( TopOn ‘ 𝑆 ) ) |
| 102 |
|
toponuni |
⊢ ( 𝐾 ∈ ( TopOn ‘ 𝑆 ) → 𝑆 = ∪ 𝐾 ) |
| 103 |
101 102
|
syl |
⊢ ( 𝜑 → 𝑆 = ∪ 𝐾 ) |
| 104 |
103
|
raleqdv |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝑆 ∃ 𝑓 ∈ ( II Cn 𝐾 ) ( ( 𝑓 ‘ 0 ) = 𝑦 ∧ ( 𝑓 ‘ 1 ) = 𝑥 ) ↔ ∀ 𝑥 ∈ ∪ 𝐾 ∃ 𝑓 ∈ ( II Cn 𝐾 ) ( ( 𝑓 ‘ 0 ) = 𝑦 ∧ ( 𝑓 ‘ 1 ) = 𝑥 ) ) ) |
| 105 |
103 104
|
raleqbidv |
⊢ ( 𝜑 → ( ∀ 𝑦 ∈ 𝑆 ∀ 𝑥 ∈ 𝑆 ∃ 𝑓 ∈ ( II Cn 𝐾 ) ( ( 𝑓 ‘ 0 ) = 𝑦 ∧ ( 𝑓 ‘ 1 ) = 𝑥 ) ↔ ∀ 𝑦 ∈ ∪ 𝐾 ∀ 𝑥 ∈ ∪ 𝐾 ∃ 𝑓 ∈ ( II Cn 𝐾 ) ( ( 𝑓 ‘ 0 ) = 𝑦 ∧ ( 𝑓 ‘ 1 ) = 𝑥 ) ) ) |
| 106 |
98 105
|
mpbid |
⊢ ( 𝜑 → ∀ 𝑦 ∈ ∪ 𝐾 ∀ 𝑥 ∈ ∪ 𝐾 ∃ 𝑓 ∈ ( II Cn 𝐾 ) ( ( 𝑓 ‘ 0 ) = 𝑦 ∧ ( 𝑓 ‘ 1 ) = 𝑥 ) ) |
| 107 |
|
eqid |
⊢ ∪ 𝐾 = ∪ 𝐾 |
| 108 |
107
|
ispconn |
⊢ ( 𝐾 ∈ PConn ↔ ( 𝐾 ∈ Top ∧ ∀ 𝑦 ∈ ∪ 𝐾 ∀ 𝑥 ∈ ∪ 𝐾 ∃ 𝑓 ∈ ( II Cn 𝐾 ) ( ( 𝑓 ‘ 0 ) = 𝑦 ∧ ( 𝑓 ‘ 1 ) = 𝑥 ) ) ) |
| 109 |
11 106 108
|
sylanbrc |
⊢ ( 𝜑 → 𝐾 ∈ PConn ) |