Step |
Hyp |
Ref |
Expression |
1 |
|
cvxpconn.1 |
⊢ ( 𝜑 → 𝑆 ⊆ ℂ ) |
2 |
|
cvxpconn.2 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑡 ∈ ( 0 [,] 1 ) ) ) → ( ( 𝑡 · 𝑥 ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) ∈ 𝑆 ) |
3 |
|
cvxpconn.3 |
⊢ 𝐽 = ( TopOpen ‘ ℂfld ) |
4 |
|
cvxpconn.4 |
⊢ 𝐾 = ( 𝐽 ↾t 𝑆 ) |
5 |
3
|
cnfldtop |
⊢ 𝐽 ∈ Top |
6 |
|
cnex |
⊢ ℂ ∈ V |
7 |
|
ssexg |
⊢ ( ( 𝑆 ⊆ ℂ ∧ ℂ ∈ V ) → 𝑆 ∈ V ) |
8 |
1 6 7
|
sylancl |
⊢ ( 𝜑 → 𝑆 ∈ V ) |
9 |
|
resttop |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ∈ V ) → ( 𝐽 ↾t 𝑆 ) ∈ Top ) |
10 |
5 8 9
|
sylancr |
⊢ ( 𝜑 → ( 𝐽 ↾t 𝑆 ) ∈ Top ) |
11 |
4 10
|
eqeltrid |
⊢ ( 𝜑 → 𝐾 ∈ Top ) |
12 |
3
|
dfii3 |
⊢ II = ( 𝐽 ↾t ( 0 [,] 1 ) ) |
13 |
3
|
cnfldtopon |
⊢ 𝐽 ∈ ( TopOn ‘ ℂ ) |
14 |
13
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆 ) ) → 𝐽 ∈ ( TopOn ‘ ℂ ) ) |
15 |
|
unitssre |
⊢ ( 0 [,] 1 ) ⊆ ℝ |
16 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
17 |
15 16
|
sstri |
⊢ ( 0 [,] 1 ) ⊆ ℂ |
18 |
17
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆 ) ) → ( 0 [,] 1 ) ⊆ ℂ ) |
19 |
14
|
cnmptid |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆 ) ) → ( 𝑡 ∈ ℂ ↦ 𝑡 ) ∈ ( 𝐽 Cn 𝐽 ) ) |
20 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆 ) ) → 𝑆 ⊆ ℂ ) |
21 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆 ) ) → 𝑥 ∈ 𝑆 ) |
22 |
20 21
|
sseldd |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆 ) ) → 𝑥 ∈ ℂ ) |
23 |
14 14 22
|
cnmptc |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆 ) ) → ( 𝑡 ∈ ℂ ↦ 𝑥 ) ∈ ( 𝐽 Cn 𝐽 ) ) |
24 |
3
|
mulcn |
⊢ · ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) |
25 |
24
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆 ) ) → · ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) ) |
26 |
14 19 23 25
|
cnmpt12f |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆 ) ) → ( 𝑡 ∈ ℂ ↦ ( 𝑡 · 𝑥 ) ) ∈ ( 𝐽 Cn 𝐽 ) ) |
27 |
|
1cnd |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆 ) ) → 1 ∈ ℂ ) |
28 |
14 14 27
|
cnmptc |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆 ) ) → ( 𝑡 ∈ ℂ ↦ 1 ) ∈ ( 𝐽 Cn 𝐽 ) ) |
29 |
3
|
subcn |
⊢ − ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) |
30 |
29
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆 ) ) → − ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) ) |
31 |
14 28 19 30
|
cnmpt12f |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆 ) ) → ( 𝑡 ∈ ℂ ↦ ( 1 − 𝑡 ) ) ∈ ( 𝐽 Cn 𝐽 ) ) |
32 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆 ) ) → 𝑦 ∈ 𝑆 ) |
33 |
20 32
|
sseldd |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆 ) ) → 𝑦 ∈ ℂ ) |
34 |
14 14 33
|
cnmptc |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆 ) ) → ( 𝑡 ∈ ℂ ↦ 𝑦 ) ∈ ( 𝐽 Cn 𝐽 ) ) |
35 |
14 31 34 25
|
cnmpt12f |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆 ) ) → ( 𝑡 ∈ ℂ ↦ ( ( 1 − 𝑡 ) · 𝑦 ) ) ∈ ( 𝐽 Cn 𝐽 ) ) |
36 |
3
|
addcn |
⊢ + ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) |
37 |
36
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆 ) ) → + ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) ) |
38 |
14 26 35 37
|
cnmpt12f |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆 ) ) → ( 𝑡 ∈ ℂ ↦ ( ( 𝑡 · 𝑥 ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) ) ∈ ( 𝐽 Cn 𝐽 ) ) |
39 |
12 14 18 38
|
cnmpt1res |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆 ) ) → ( 𝑡 ∈ ( 0 [,] 1 ) ↦ ( ( 𝑡 · 𝑥 ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) ) ∈ ( II Cn 𝐽 ) ) |
40 |
2
|
3exp2 |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑆 → ( 𝑦 ∈ 𝑆 → ( 𝑡 ∈ ( 0 [,] 1 ) → ( ( 𝑡 · 𝑥 ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) ∈ 𝑆 ) ) ) ) |
41 |
40
|
com23 |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝑆 → ( 𝑥 ∈ 𝑆 → ( 𝑡 ∈ ( 0 [,] 1 ) → ( ( 𝑡 · 𝑥 ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) ∈ 𝑆 ) ) ) ) |
42 |
41
|
imp42 |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆 ) ) ∧ 𝑡 ∈ ( 0 [,] 1 ) ) → ( ( 𝑡 · 𝑥 ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) ∈ 𝑆 ) |
43 |
42
|
fmpttd |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆 ) ) → ( 𝑡 ∈ ( 0 [,] 1 ) ↦ ( ( 𝑡 · 𝑥 ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) ) : ( 0 [,] 1 ) ⟶ 𝑆 ) |
44 |
43
|
frnd |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆 ) ) → ran ( 𝑡 ∈ ( 0 [,] 1 ) ↦ ( ( 𝑡 · 𝑥 ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) ) ⊆ 𝑆 ) |
45 |
|
cnrest2 |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ ℂ ) ∧ ran ( 𝑡 ∈ ( 0 [,] 1 ) ↦ ( ( 𝑡 · 𝑥 ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) ) ⊆ 𝑆 ∧ 𝑆 ⊆ ℂ ) → ( ( 𝑡 ∈ ( 0 [,] 1 ) ↦ ( ( 𝑡 · 𝑥 ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) ) ∈ ( II Cn 𝐽 ) ↔ ( 𝑡 ∈ ( 0 [,] 1 ) ↦ ( ( 𝑡 · 𝑥 ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) ) ∈ ( II Cn ( 𝐽 ↾t 𝑆 ) ) ) ) |
46 |
14 44 20 45
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆 ) ) → ( ( 𝑡 ∈ ( 0 [,] 1 ) ↦ ( ( 𝑡 · 𝑥 ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) ) ∈ ( II Cn 𝐽 ) ↔ ( 𝑡 ∈ ( 0 [,] 1 ) ↦ ( ( 𝑡 · 𝑥 ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) ) ∈ ( II Cn ( 𝐽 ↾t 𝑆 ) ) ) ) |
47 |
39 46
|
mpbid |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆 ) ) → ( 𝑡 ∈ ( 0 [,] 1 ) ↦ ( ( 𝑡 · 𝑥 ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) ) ∈ ( II Cn ( 𝐽 ↾t 𝑆 ) ) ) |
48 |
4
|
oveq2i |
⊢ ( II Cn 𝐾 ) = ( II Cn ( 𝐽 ↾t 𝑆 ) ) |
49 |
47 48
|
eleqtrrdi |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆 ) ) → ( 𝑡 ∈ ( 0 [,] 1 ) ↦ ( ( 𝑡 · 𝑥 ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) ) ∈ ( II Cn 𝐾 ) ) |
50 |
|
0elunit |
⊢ 0 ∈ ( 0 [,] 1 ) |
51 |
|
oveq1 |
⊢ ( 𝑡 = 0 → ( 𝑡 · 𝑥 ) = ( 0 · 𝑥 ) ) |
52 |
|
oveq2 |
⊢ ( 𝑡 = 0 → ( 1 − 𝑡 ) = ( 1 − 0 ) ) |
53 |
|
1m0e1 |
⊢ ( 1 − 0 ) = 1 |
54 |
52 53
|
eqtrdi |
⊢ ( 𝑡 = 0 → ( 1 − 𝑡 ) = 1 ) |
55 |
54
|
oveq1d |
⊢ ( 𝑡 = 0 → ( ( 1 − 𝑡 ) · 𝑦 ) = ( 1 · 𝑦 ) ) |
56 |
51 55
|
oveq12d |
⊢ ( 𝑡 = 0 → ( ( 𝑡 · 𝑥 ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) = ( ( 0 · 𝑥 ) + ( 1 · 𝑦 ) ) ) |
57 |
|
eqid |
⊢ ( 𝑡 ∈ ( 0 [,] 1 ) ↦ ( ( 𝑡 · 𝑥 ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) ) = ( 𝑡 ∈ ( 0 [,] 1 ) ↦ ( ( 𝑡 · 𝑥 ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) ) |
58 |
|
ovex |
⊢ ( ( 0 · 𝑥 ) + ( 1 · 𝑦 ) ) ∈ V |
59 |
56 57 58
|
fvmpt |
⊢ ( 0 ∈ ( 0 [,] 1 ) → ( ( 𝑡 ∈ ( 0 [,] 1 ) ↦ ( ( 𝑡 · 𝑥 ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) ) ‘ 0 ) = ( ( 0 · 𝑥 ) + ( 1 · 𝑦 ) ) ) |
60 |
50 59
|
ax-mp |
⊢ ( ( 𝑡 ∈ ( 0 [,] 1 ) ↦ ( ( 𝑡 · 𝑥 ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) ) ‘ 0 ) = ( ( 0 · 𝑥 ) + ( 1 · 𝑦 ) ) |
61 |
22
|
mul02d |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆 ) ) → ( 0 · 𝑥 ) = 0 ) |
62 |
33
|
mulid2d |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆 ) ) → ( 1 · 𝑦 ) = 𝑦 ) |
63 |
61 62
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆 ) ) → ( ( 0 · 𝑥 ) + ( 1 · 𝑦 ) ) = ( 0 + 𝑦 ) ) |
64 |
33
|
addid2d |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆 ) ) → ( 0 + 𝑦 ) = 𝑦 ) |
65 |
63 64
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆 ) ) → ( ( 0 · 𝑥 ) + ( 1 · 𝑦 ) ) = 𝑦 ) |
66 |
60 65
|
syl5eq |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆 ) ) → ( ( 𝑡 ∈ ( 0 [,] 1 ) ↦ ( ( 𝑡 · 𝑥 ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) ) ‘ 0 ) = 𝑦 ) |
67 |
|
1elunit |
⊢ 1 ∈ ( 0 [,] 1 ) |
68 |
|
oveq1 |
⊢ ( 𝑡 = 1 → ( 𝑡 · 𝑥 ) = ( 1 · 𝑥 ) ) |
69 |
|
oveq2 |
⊢ ( 𝑡 = 1 → ( 1 − 𝑡 ) = ( 1 − 1 ) ) |
70 |
|
1m1e0 |
⊢ ( 1 − 1 ) = 0 |
71 |
69 70
|
eqtrdi |
⊢ ( 𝑡 = 1 → ( 1 − 𝑡 ) = 0 ) |
72 |
71
|
oveq1d |
⊢ ( 𝑡 = 1 → ( ( 1 − 𝑡 ) · 𝑦 ) = ( 0 · 𝑦 ) ) |
73 |
68 72
|
oveq12d |
⊢ ( 𝑡 = 1 → ( ( 𝑡 · 𝑥 ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) = ( ( 1 · 𝑥 ) + ( 0 · 𝑦 ) ) ) |
74 |
|
ovex |
⊢ ( ( 1 · 𝑥 ) + ( 0 · 𝑦 ) ) ∈ V |
75 |
73 57 74
|
fvmpt |
⊢ ( 1 ∈ ( 0 [,] 1 ) → ( ( 𝑡 ∈ ( 0 [,] 1 ) ↦ ( ( 𝑡 · 𝑥 ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) ) ‘ 1 ) = ( ( 1 · 𝑥 ) + ( 0 · 𝑦 ) ) ) |
76 |
67 75
|
ax-mp |
⊢ ( ( 𝑡 ∈ ( 0 [,] 1 ) ↦ ( ( 𝑡 · 𝑥 ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) ) ‘ 1 ) = ( ( 1 · 𝑥 ) + ( 0 · 𝑦 ) ) |
77 |
22
|
mulid2d |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆 ) ) → ( 1 · 𝑥 ) = 𝑥 ) |
78 |
33
|
mul02d |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆 ) ) → ( 0 · 𝑦 ) = 0 ) |
79 |
77 78
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆 ) ) → ( ( 1 · 𝑥 ) + ( 0 · 𝑦 ) ) = ( 𝑥 + 0 ) ) |
80 |
22
|
addid1d |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆 ) ) → ( 𝑥 + 0 ) = 𝑥 ) |
81 |
79 80
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆 ) ) → ( ( 1 · 𝑥 ) + ( 0 · 𝑦 ) ) = 𝑥 ) |
82 |
76 81
|
syl5eq |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆 ) ) → ( ( 𝑡 ∈ ( 0 [,] 1 ) ↦ ( ( 𝑡 · 𝑥 ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) ) ‘ 1 ) = 𝑥 ) |
83 |
|
fveq1 |
⊢ ( 𝑓 = ( 𝑡 ∈ ( 0 [,] 1 ) ↦ ( ( 𝑡 · 𝑥 ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) ) → ( 𝑓 ‘ 0 ) = ( ( 𝑡 ∈ ( 0 [,] 1 ) ↦ ( ( 𝑡 · 𝑥 ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) ) ‘ 0 ) ) |
84 |
83
|
eqeq1d |
⊢ ( 𝑓 = ( 𝑡 ∈ ( 0 [,] 1 ) ↦ ( ( 𝑡 · 𝑥 ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) ) → ( ( 𝑓 ‘ 0 ) = 𝑦 ↔ ( ( 𝑡 ∈ ( 0 [,] 1 ) ↦ ( ( 𝑡 · 𝑥 ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) ) ‘ 0 ) = 𝑦 ) ) |
85 |
|
fveq1 |
⊢ ( 𝑓 = ( 𝑡 ∈ ( 0 [,] 1 ) ↦ ( ( 𝑡 · 𝑥 ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) ) → ( 𝑓 ‘ 1 ) = ( ( 𝑡 ∈ ( 0 [,] 1 ) ↦ ( ( 𝑡 · 𝑥 ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) ) ‘ 1 ) ) |
86 |
85
|
eqeq1d |
⊢ ( 𝑓 = ( 𝑡 ∈ ( 0 [,] 1 ) ↦ ( ( 𝑡 · 𝑥 ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) ) → ( ( 𝑓 ‘ 1 ) = 𝑥 ↔ ( ( 𝑡 ∈ ( 0 [,] 1 ) ↦ ( ( 𝑡 · 𝑥 ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) ) ‘ 1 ) = 𝑥 ) ) |
87 |
84 86
|
anbi12d |
⊢ ( 𝑓 = ( 𝑡 ∈ ( 0 [,] 1 ) ↦ ( ( 𝑡 · 𝑥 ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) ) → ( ( ( 𝑓 ‘ 0 ) = 𝑦 ∧ ( 𝑓 ‘ 1 ) = 𝑥 ) ↔ ( ( ( 𝑡 ∈ ( 0 [,] 1 ) ↦ ( ( 𝑡 · 𝑥 ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) ) ‘ 0 ) = 𝑦 ∧ ( ( 𝑡 ∈ ( 0 [,] 1 ) ↦ ( ( 𝑡 · 𝑥 ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) ) ‘ 1 ) = 𝑥 ) ) ) |
88 |
87
|
rspcev |
⊢ ( ( ( 𝑡 ∈ ( 0 [,] 1 ) ↦ ( ( 𝑡 · 𝑥 ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) ) ∈ ( II Cn 𝐾 ) ∧ ( ( ( 𝑡 ∈ ( 0 [,] 1 ) ↦ ( ( 𝑡 · 𝑥 ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) ) ‘ 0 ) = 𝑦 ∧ ( ( 𝑡 ∈ ( 0 [,] 1 ) ↦ ( ( 𝑡 · 𝑥 ) + ( ( 1 − 𝑡 ) · 𝑦 ) ) ) ‘ 1 ) = 𝑥 ) ) → ∃ 𝑓 ∈ ( II Cn 𝐾 ) ( ( 𝑓 ‘ 0 ) = 𝑦 ∧ ( 𝑓 ‘ 1 ) = 𝑥 ) ) |
89 |
49 66 82 88
|
syl12anc |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝑆 ∧ 𝑥 ∈ 𝑆 ) ) → ∃ 𝑓 ∈ ( II Cn 𝐾 ) ( ( 𝑓 ‘ 0 ) = 𝑦 ∧ ( 𝑓 ‘ 1 ) = 𝑥 ) ) |
90 |
89
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝑆 ∀ 𝑥 ∈ 𝑆 ∃ 𝑓 ∈ ( II Cn 𝐾 ) ( ( 𝑓 ‘ 0 ) = 𝑦 ∧ ( 𝑓 ‘ 1 ) = 𝑥 ) ) |
91 |
|
resttopon |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ ℂ ) ∧ 𝑆 ⊆ ℂ ) → ( 𝐽 ↾t 𝑆 ) ∈ ( TopOn ‘ 𝑆 ) ) |
92 |
13 1 91
|
sylancr |
⊢ ( 𝜑 → ( 𝐽 ↾t 𝑆 ) ∈ ( TopOn ‘ 𝑆 ) ) |
93 |
4 92
|
eqeltrid |
⊢ ( 𝜑 → 𝐾 ∈ ( TopOn ‘ 𝑆 ) ) |
94 |
|
toponuni |
⊢ ( 𝐾 ∈ ( TopOn ‘ 𝑆 ) → 𝑆 = ∪ 𝐾 ) |
95 |
93 94
|
syl |
⊢ ( 𝜑 → 𝑆 = ∪ 𝐾 ) |
96 |
95
|
raleqdv |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝑆 ∃ 𝑓 ∈ ( II Cn 𝐾 ) ( ( 𝑓 ‘ 0 ) = 𝑦 ∧ ( 𝑓 ‘ 1 ) = 𝑥 ) ↔ ∀ 𝑥 ∈ ∪ 𝐾 ∃ 𝑓 ∈ ( II Cn 𝐾 ) ( ( 𝑓 ‘ 0 ) = 𝑦 ∧ ( 𝑓 ‘ 1 ) = 𝑥 ) ) ) |
97 |
95 96
|
raleqbidv |
⊢ ( 𝜑 → ( ∀ 𝑦 ∈ 𝑆 ∀ 𝑥 ∈ 𝑆 ∃ 𝑓 ∈ ( II Cn 𝐾 ) ( ( 𝑓 ‘ 0 ) = 𝑦 ∧ ( 𝑓 ‘ 1 ) = 𝑥 ) ↔ ∀ 𝑦 ∈ ∪ 𝐾 ∀ 𝑥 ∈ ∪ 𝐾 ∃ 𝑓 ∈ ( II Cn 𝐾 ) ( ( 𝑓 ‘ 0 ) = 𝑦 ∧ ( 𝑓 ‘ 1 ) = 𝑥 ) ) ) |
98 |
90 97
|
mpbid |
⊢ ( 𝜑 → ∀ 𝑦 ∈ ∪ 𝐾 ∀ 𝑥 ∈ ∪ 𝐾 ∃ 𝑓 ∈ ( II Cn 𝐾 ) ( ( 𝑓 ‘ 0 ) = 𝑦 ∧ ( 𝑓 ‘ 1 ) = 𝑥 ) ) |
99 |
|
eqid |
⊢ ∪ 𝐾 = ∪ 𝐾 |
100 |
99
|
ispconn |
⊢ ( 𝐾 ∈ PConn ↔ ( 𝐾 ∈ Top ∧ ∀ 𝑦 ∈ ∪ 𝐾 ∀ 𝑥 ∈ ∪ 𝐾 ∃ 𝑓 ∈ ( II Cn 𝐾 ) ( ( 𝑓 ‘ 0 ) = 𝑦 ∧ ( 𝑓 ‘ 1 ) = 𝑥 ) ) ) |
101 |
11 98 100
|
sylanbrc |
⊢ ( 𝜑 → 𝐾 ∈ PConn ) |